B H:
w4
¥ 5
Al
€ bk
(=R U

hs MW LY

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Bbittt (30

B RIBENL 0 5 AR R D A

HZ M
11910524
BEER
B 5 P B
X = B

202345 H7H



CLC Number

UDC Available for reference [Yes [No

6 Southern University
I C h of Science and
w Technology

Undergraduate Thesis

Thesis Title: Analysis on Ergodicity of Monotone SODEs

Student Name: Zhizhou Liu

Student ID: 11910524

Department: Department of Mathematics
Program: Mathematics and Applied Mathematics
Thesis Advisor: Assoicate Professor Zhihui Liu

Date: May 7, 2023



L AR NGRS B AT 232 Sk st B30, 2RSS T,
WSLHEATHT ARG MR, P 8. B R BURIY ST e .

2. BROCH C e EM SN A AL, AR SO AR T H Al N Bl
SO R REIE G RIIE M BOR R . AR SR T H T
RS NI ERAA, 2 e S b LB 0 7 S Chn B

3. AR NREERENL S (i) W@t s A w728
b NBIF FC RN Dy 3 A RS AT N

4. FEERVAR I Ciit) ORI T T AR AR AT, A
NARSEA P IR DT

TEE%4:
F H




COMMITMENT OF HONESTY

I. I solemnly promise that the paper presented comes from my
independent research work under my supervisor’s supervision. All
statistics and images are real and reliable.

2. Except for the annotated reference, the paper contents no other
published work or achievement by person or group. All people making
important contributions to the study of the paper have been indicated
clearly in the paper.

3. I promise that I did not plagiarize other people’s research achievement
or forge related data in the process of designing topic and research
content.

4. If there is violation of any intellectual property right, I will take legal

responsibility myself.

Signature:

Date:



BRI S HiEEA T

K Z
(%2 #3807 AFE)

(EEE]: A EEH KRB RAEIE Lipsheitz 218 T BEHLE i 5 J7 F2
(SODE) WIS, el e il itk . ik, A SCE 5 MR G 1 3E A M
& Markov #%#! Markov FH#f ik, FERTEA 4 T BENLAR 73 (166 #4530
A—J7TH, FRATIETE 5 T-45 & Markov E3E T 38 PN R () — P18, X2
ARE =T FENE . EFEIS T, AT —2K REEE Lipshitz 2144
[¥) SODE #4T 1 70 #r, EBH 7 HM I FEME—E. FFIF%. Markov P
PR . Bea, FATEIL S BIE 5 Feller PEAUA AT 201, FRATAS2] T
AN B P E— s R 28 =525 H 1Y Krylov-Bogoliubov & 2 1 3 H 1iE
B 7 AN FE I AFAE Y s HH Doob s, X UdBH 1 it i tE . S Bl
T 4 R E A SCERMMMELE T H RS 78 1 518 B L
SRR I, AR SR T R R T S

[9&%@'\@] AN T s FRAREAL S T 82 JE Lipshcitz 26445 AT
i P



[ABSTRACT]: The aim of this paper is to investigate the properties, espe-
cially ergodicity, of Stochastic Ordinary Differential Equations (SODEs) under
non-Lipschitz conditions of coefficients. To achieve this, we start from the
basic concept in probability theory such as Markov kernel and Markov semi-
group, and briefly illustrate the ideas of stochastic calculus (It6’s integral). On
the other hand, we also need a general theory for finding ergodic measures of
a given Markov semigroup, which is the content of the third section. In Sec-
tion 4, we analyze a class of non-Lipschitz SODEs and prove the existence,
uniqueness, homogenity, Markov and semigroup properties of their solutions.
Finally, we prove the uniqueness of the invariant measure through showing that
it is strong Feller and irreducible; and prove the existence of invariant measure
utilizing Krylov-Bogoliubov theorem. By Doob’s theorem, the result follows.
None of the results appeared is claimed for originality. The value of the thesis is
on the systematic analysis of the ergodicity of monotone SODEs, which gives

a reference for future studies on this type of equation.

[Key words]: Invariant Measure, Monotone SODE, Non-Lipschitz Condi-
tion, Semigroup Property, Ergodicity
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1. Introduction and Outlines

Description of a system using probability would make it more precise, however, more
complex, simultaneously. In standard ergodic theory, the dynamic systems are deterministic;
that is, given an x in the phase space of the system, its position would be at 7,z after time ¢.
There is no possibility for x to go to other places, even a mistake of small e. However, no
matter how simple a system is, as long as it exists in real world, it will “make mistakes” by
disturbance. Therefore we define the Markov kernel (to be studied in §2.1) P,(x, A), which
is the conditional probability (to be studied in §2.4) of X goes to A after time ¢ given it
started at x.

Although we can describe the system abstractly by a Markov kernel, it is generally im-
possible to solve it implicitly; that is, obtaining a mathematical formula of P;(z, A). How-
ever, intuitively, for a “regular” system, if we observe it for a sufficiently long time, we
should obtain all the information of it. Such hypothesis is called ergodicity (to be studied in
§3.1) — time average equaling space average.

In this paper, we shall focus on a purticular class of systems which are generated by
the solutions of a class of SODEs (under non-Lipschitz conditions). The Lipschitz case has
already been well-studied in [Da Prato et al., 1996]. Our non-Lipshitz conditions, although
had been studied as well, is a trendency in recent studies. We need some preparatory work
before having a close look at it.

Generally speaking, Section 2 provides us both of tools for the study of Markov semi-
group and SODESs and section 3 studies the methods of finding ergodic measures for a given

semigroup. The main results are

* existence and uniqueness of invariant measure(to be studied in §3.1) imply ergodicity

(Doob’s Theorem 3.4.3);

* strong Feller property and irreducibility imply uniqueness of invariant measure (Has-

minskii’s Theorem 3.4.2).



Therefore, provided that the solution is indeed a Markov semigroup, we only need to show
three properties to achieve our goal, namely the existence of invariant measure, strong Feller

property and irreducibility.



2. Essentials in Probability Theory

For the readers’ convenience, the mathematical preliminaries in probability theory are
introduced in this section. The representation style of this section is well-designed: for those
are highly related to the understanding of our main object but merely mentioned in standard
textbooks, rigorous mathematical treatments are implemented; for the others, we will only
provide a brief description.

Generally speaking, in §2.1-§2.3, we introduce Markov kernels, semigroups and pro-
cess, which will be needed for the analysis of the problem, and §2.4-§2.6 provides the neces-
sary tools to the setup of our problem (to define an SODE). In §2.1, a probabilistic transport
is described in both kernel and semigorup languages. Tensor product theorem helps us to
define a probability measure on a finite dimensional space with a given transport. In §2.2,
we investigate on infinite dimensions and make clear the widely-accepted but ambiguous
terminologies in stochastic process such as information flow. These are essential to help un-
derstand the mathematical languages in human words. Then we move on to §2.3 to extend
the finite dimensional probability measure to infinite dimensions, which explains the exis-
tence of Brownian motion. We also remark that this can be generalized to the construction
of any Markov process. In §2.4, the connection between two kinds of conditional expecta-
tion is illustrated clearly. Furthermore, we point out that if we use tensor product theorem
to build the probability measure, it can indeed be understood as conditional probability. We
give the definitions for both distrete- and continuous-time martingale in §2.5. And finally
in §2.6, we breifly discuss the construction of It6 integral and state the well-known formula
established by Itd, which in my opinion is the marrow in his theory and would be helpful to

the estimation of solutions in the main part of the thesis.
2.1 Markov Kernel and Markov Semigroup

In this subsection, we shall introduce the idea of transition in both the language of kernel
and semigroup, which is not included in some standard textbooks of probability theory. The

materials could be found in Chapter 1 of [Douc et al., 2018]. The beautiful notation makes



it easier for us to illustrate the ideas of in both Markov chain and Markov process.
Since we are in the universe of probability, we only care for Markvo kernel. However,

it should be remarked that similar results in this section hold for o-finite kernell?).

2.1.1 Markov Kernel and its Corresponding Operator

There are two mathematical languages to describe a probabilistic transport: kernel lan-

guage and semigroup language.

Definition 2.1.1 (Markov kernel). Let (X, 2") and (Y, % ) be two measurable spaces. A
Markov kernel N on X x % is a mapping N : X x & — [0, 1] satisfying the following

conditions:
(i) forevery x € X, the mapping N(x,-) : A — N(z, A) is a probability measure on %/

(ii) forevery A € %, the mapping N (-, A) : x — N(xz, A) is a measurable function from
(X, 2) to ([0, 1], 2)".

Remark 2.1.2. We can understand a Markov kernel N (x, A) as the probability of = going to

A with the help of N. For a reason, see Remark 2.4.8.

Remark 2.1.3 (Probability measure seen as Markov kernel). A probability measure v on a
space (Y, %) can be seen as a Markov kernel on X x # by defining N (z, A) = v(A) for all
x € X. In this case, our previous understanding does not make sense since all the probability
of z goes to a fixed set A equal. We can understand it as the initial measure on (Y, %); that

is, a given probability measure before transportations happen.

Notation 2.1.4. Let N be aMarkov kernel on X x % and f € B, (Y) (the set of all real-valued

bounded functions on Y). A function Fy f : X — R is defined by

Fyf() & / N (e, dy) f (). 1)

Notice that Fy14(x) = N(z, A),for A € #.

' % will always denote the Borel o-algebra of the corresponding metric space. In this case, Z = ([0, 1]).



By Remark 2.1.3, we can consequently define F), similarly,

Fof(z) = / v(dy) (),

for all z € X. Since the function F), f(x) is a constant, we denote it simply by F,, f. Note

that this is equivalent to E,, (f).

The following lemma ensures the measurablity of V f.

Lemma 2.1.5. Let N be a Markov kernel on X x %. Then
(i) forall f € By(Y), Fyf € By(X),

Proof. Write down the definition to check that Fy f is 2 -measurable when f is a simple
function. Then for f € B,(Y), there exists a sequence of functions f,, converges pointwise to
f by the approximation theorem. Then by the dominated convergence theorem, Fy f(z) =
lim,, Fy f,(z) for all x € X. Therefore Fy f is 2 -measurable as being the pointwise limit

of a sequence of measurable functions. Finally, from

Fuf(a /f xdy<\froo/Nxdy> Floe

we obtain |Fy floo < | f|oo- O

Notation 2.1.6 (Indentify Fy with V). Thanks to the lemma, Fy becomes an bounded linear
operator from B, (Y) to B,(X); in other words, every Markov kernel N (x, A) has a natural
embedding to L(B,(Y), By(X)) (L(X, YY) denotes the space of bounded linear operator from
X toY. If X =Y, then simply denoted by L(X).) by N — Fx. Moreover, if the Markov
kernel is just a probability measure v, then F,, can be viewed as a linear functional.

With a slight abuse of notation for the convenience of representation, we will use the

same symbol for both the kernel and the operator 2 ; that is, we will identify Fy with .

2 Although it sounds unreasonable, we have met such abusion already in Linear Algebra, when we identify matrix A
with the linear map induced by A.



Thus the notation Fy would be abandoned proceedingly.

The following lemma provides a useful tool to verify a construction of operator being

a Markov kernel.

Lemma 2.1.7. Let M : B,(Y) — By(X) be an additive (M(f + g) = Mf + Mg) and
homogeneous (M (af) = aM f) operator such that lim,, M(f,) = M (lim, f,,) for every

increasing sequence { f,,n € N} of functions in B, (Y). Furthermore, M (1y) = 1. Then

(i) the function defined on X x % by N(x,A) = M(14)(x) forxz € Xand A € ¥ isa

Markov kernel;

(ii) M(f) = Nf forall f € By(Y).

Proof. 1. Since M is additive for each x € X, the function A — N(z, A) is additive.
o-additive then follows by the monotone convergence property. Write down the defi-

nition of N (x, A) being a Markov kernel to finish the proof.

2. To show M(f) = Nf forall f € B,(Y). Consider firstly f being simple functions

and then apply dominated convergence theorem.

2.1.2  Compositions of Kernels, Markov Semigroup

Theorem 2.1.8 (Compositions of kernels). Let (X, 2"), (Y, %) and (Z, %) be three mea-
surable spaces and let M, N be two kernels on X x % and Y x Z respectively. Then there
exists a kernel on X x Z, called the composition of M and N, denoted by M N, such that
fJorallz € ', A e Z and f € By(Z),

MN(x,A):/YM(x,dy)N(y,A).

Furthermore, M N f(x) = M|[N f](z). Consequently, the compositions (when there are

more than three kernels) of kernels are associative.



Proof. The kernels M and N define two additive and positively homogeneous operators on
B, (Y) and B,(Z). Then it is easy to check that M o N is additive and positively homogeneous,
where o denote the usual composition of operators. The monotone convergence property also
holds for M o N. Therefore by Lemma 2.1.7, there exists a kernel, denoted by M N, such
that M o N(f) = (MN)(f) forall f € B,(Z). To conclude the proof, it remains to write

down the relationship between the kernel and its relating operator. [

Remark2.1.9. (i) As Remark 2.1.2, we can understand M N (x, A) as the probability of

x goes A with the help of N then M.

(if) From Remark 2.1.3, as a corollary, if v € M (Z") (the set of all probability measures

on (X, 27)), then there exists a probability measure vN € M (2) such that

vM(A) :/Xy(da:)M(x,A). ()

Similarly, vM can be understood as the result measure after transported by M with

initial measure v.

Remark 2.1.10. Given a Markov kernel N on X x 2", we may define the n-th power of this
kernel as the n-th compositions. Note that the associativity of the compositions yields the

Chapman-Kolmogorov equation:
Ntk — N o NF (3)

or equivalently
Nz, 4) = [ N7 dp)NH . A) )
X

Equation (3) is called a semigroup structure. Formally, we have the follwing definition.

Definition 2.1.11. Let T = N or R,. A Markov semigroup {P;,t € T} on By(Y) is a

mapping T — L(B(Y)), t — P; such that

(1) Ph=1d,P,s = P, o P,forallt,s € T.



(if) Forany ¢ € T and = € Y, there exists a probability measure m;(x,-) € M;(Y) such

that
Prpl) = / ()i, dy)

for all ¢ € B,(H).

(ili) When T = R, for any ¢ € C,(H) (the set of continuous and bounded functions on
H) (resp. By(H)) and = € H, the function t — P,p(z) is continuous (resp. Borel

measurable).

It is easy to see mo(z, ) = 0, forall x € Y; and my . (x, A) = [, m(z,dy)m,(y, A).
Very often, (iii) is not required in the definition of Markov semigroup F;. In this case

condition (iii) means that P; is stochastic continuous (Definition 5.1, [Da Prato, 2006]).

Remark?2.1.12. When T = N, the semigroup can be constructed by only one Markov kernel.
It is immediate, from (1) and (3), that { N*, k € N} is a Markov semigroup, provided that N
is a Markov kernel.

However when T = R, the time index is continuous. We are required to have a
sequence of Markov kernels satisfying m,,(x, A) = [, m/(z, dy)m,(y, A). Since we abuse
the notation (Notation 2.1.6), m(x, -) would be written as P,(z, -) for a semigroup induced

by a Markov kernel.

Remark 2.1.13. Let X, Y be metric space so that B,(X), B, (Y) would be Banach space (The-

orem 4.9, [Robinson, 2020]). Now in the view point of semigroup, (2) is equivalent to

VM(f) = / M (x)(dz) = v(MF).

Since M € L(By(Y), B, (X)) and v € B,(X)* (here the star means the dual space), there is a
adjoint operator M* € L(B,(X)*, B,(Y)*) such that M*v(f) = v(Mf).

This remark emphasises that we could obtain similar expression as the composition in
kernel language using only the language of semigroup. We will continue the discussion when

the concept of invariant measure is introduced.
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2.1.3 Tensor Products of Kernels

The compositions of kernels allow us to integrate on the middle steps of “transports”
and care only on final effects the overall transports made, while the tensor product of kernels
gives us the full information at each step.

We must deal with the measurablity®. E, here means the section {z € Z : (y,z) € E}.

Lemma 2.1.14. Let (Y, %) and (7, %) be two measurable spaces and N be a Markov kernel

onY x Z. Suppose 1, f € B. (% & &) (recall that % & % means 0(¥ x Z)).
(i) B, € & forally €Y.
(ii) N(y, E,) is % -measurable.

(iii) [, [(y,2)N(y,dz) is & -measurable.

Proof. 1. Define

G ¥ Ecw oz E cZ).

Then write down the definition to check ¥ is a g-algebra. On the other hand, if A €
%.B e ¥,then(Ax B), = Bify € Aand (AXx B), = @ify ¢ A. Thus
Ax B € 9. As % @ Z is generated by such rectangles, we must have 4| = % @ .

2. Define

G Y (Eec¥ ® % : Ny, E,) € B.(Y)}.

Observe that ¢, is a monotone class and contains the algebra of finite disjoint unions

of measurable rectangles. 4%, = # ® Z by the monotone class theorem.

3. Note that

[ 169N 09) = [ 15, ()N (. d2) = Nw. ).

Z

Therefore if f, is non-negative simple functions, then [, f,,(y, 2) N (y, dz) is measur-

able. The result then follows by the monotone convergence theorem.

3In [Douc et al., 2018], the author write (5) without checking the measurablity. We add Lemma 2.1.14 to make it
rigorous. This step is also the key step when proving the classic Fubini’s Theorem.



]

Theorem 2.1.15 (Tensor product). Let (X, 2°), (Y, %) and (Z, %) be three measurable
spaces and let M, N be two Markov kernels on X X % and Y x Z respectively. Then there
exists a Markov kernel on X x (% @ %), called the tensor product of M and N, denoted by

M ® N, such that for all f € B,(Y X Z,% @ %) its corresponding operator satisfies

M®N%@=AMuﬂwéfm@Nm®) 5)

Furthermore, if (U, % ) is a measurable space and P is a kernel on Z x % , then (M @ N) ®

P =M ® (N ® P), i.e. the tensor product of kernels is associative.

Proof. As Lemma 2.1.14 shows the integrand is measurable, we can define the mapping
g

I:B,(Y x Z) — By(X) by

fmzéMm@Aﬂwwum»

The mapping is additive and homogeneous. The monotone convergence property also holds.
The Markov kernel M ® N thus exists. Since we can explicitly write down the definition of

tensor product, the associativity is also nature. [
Notation 2.1.16. For n > 1, the n-th tensor power P®" of a kernel P on X x 2" is the kernel
on X x Z2°®" definedby P® ---® P, i.e.

P®nf(x> = e f(xh e 7xn)P(I7 dx1>P(x17dx2) T P(xn—h dxn) (6)

Remark 2.1.17. Different from compositions of kernels, tensor products M @ N stored all
the probabilistic information of the transport first N then M. For example, M @ N (z, A x B)
for A € &, B € 2 means the probability of x goes to A first with /N then goes from A to
B with M.

10



2.1.4 *Degression on Tonelli-Fubini Theorem

Let us leave the mainstream of the thesis for a while to introduce the classic Tonelli-
Fubini Theorem (a well known result in measure theory) as a corollary (or some kind of

remark) of Theorem 2.1.15. This may lead to a better understanding of tensor product.

Corollary 2.1.18 (Tonelli-Fubini). Let v be a probability measure on (Y, %) and N be a
Markov kernel on Y x %. Then there exists a probability measure on % & %, denoted

v ® N, such that

(i) forall f e By(Y X Z,% ® %),
V®Nf / dy /f Y,z y,dz)

(ii) for all Borel measurable function [ such that v @ N f exists (vesp. is finite), then
fZ N(y,dz) exists (resp. is finite) for v-almost every y, and defines a Borel
measurable function of y if it is taken as 0 or as any Borel measurable function of y

on the exceptional set. Also
vONS = / (dy) /fy, N(y,dz).

Proof. For statement (i), just take M = v in Theorem 2.1.15 in the sense of viewing measure

as kernel (Remark 2.1.3). For (ii), suppose v @ N f~ < oo. By statement (i),

/ (dy) /f Y, 2)N(y,dz) = v @ Nf~ < o0

so that [, f~(y,2)N(y,dz) is v-integrable hence v-a.e. finite. Therefore

/Z F(y, 2)N(y, dz) = / 0, 2)N(y, dz) / (0, )N (y, dz)

for v-almost every y. The remaining part of proof is just discussing different cases for the

existence (or finiteness) of v @ N f. [

11



Corollary 2.1.19 (Classic Fubini). Let vy, vy be two probability measures on (Y, %) and
(Z, Z). Then there exists a probability measure on % @ %, denoted v, ® v, such that: if

f is a Borel measurable function on (Y x Z,% & %) such that v, @ v f exists, then

@t = [ n@) [ fo2mm@) = [ @) [ 1626w

Proof. Apply Tonelli-Fubini’s Theorem (Corollary 2.1.18) with N = 1. Then change the

position of 1y and v5 to obtain the symmetric equality. ]

2.2 Stochastic Process

The aim of this section is to help understand stochastic process. Traditionally, a stochas-
tic process on a probability space (€2,.%,P) is a family of random variables { X;,t € T},
where T is the index set equals to N or R,. However, it can also be understood as a R”-
valued random object. From the view of the latter, the well-known understanding of natrual

filtration as information would be mathematically reasonable.

2.2.1 Random Object

Definition 2.2.1 (random object). A random object X on a probability space (£2,.#,P) is a
measurable function from 2 to (X, 2").
If (X, 27) = (R", #), X is said to an random vector or R"-valued random variable or

simply random variable if n = 1.

Definition 2.2.2 (induced measure). If X is a random object from (2,.%,P) — (X, Z), the

probability measure induced by X is the probability measure Px on (X, 27) given by

def

Py(B) ¥ P{X € B}

forBe 2.
One can write down the definition to check Px is indeed an probability measure.

The induced probability measure Px is also called the law of X.

*There is a convention in probability theory that we will often omit the w; that is, writing {w : X (w) € B} as {X € B}.

12



Remark 2.2.3. (1) The probability measure Px completely characterized the random ob-

ject X in the sense that it provide the probabilities of all events involving X.

(i1) Very often, when we want to investigate a random object with its law Py given, there
is no reference to the underlying probability space (€2, %, P), and actually the nature
of the underlying space is not important as long as we can define such random object
on the spacel®], i.e. {X € B} € Z forall B € 2. In fact, we can always supply the
probability space in a canonical way; take Q) = X, .# = 27, P = Px and define X to

be the identity map; that is, X (w) = w for all w € Q.

(iii) When we say “let X be a random object on a probability space (€2,.%, P)”, it actually
implicitly assumes that the space should be chosen in an appropriate way such that X

could be defined > .

2.2.2  Induced Sigma-Algebra and Doob-Dykin Lemma

Definition 2.2.4 (induced o-algebra). Let X : (©2,.#) — (X, Z") be a random object. The

o-algebra induced by X is given by

One can write down the definition to check o(X) is indeed an o-algebra.

Element in o (X) is of the form {X € A} forsome A € 2.

The induced o-algebra o (X ) is also the smallest o-algebra making X measurable (The-
orem 5.4.2, [Ash, 2000]). The lemma below named after L. Doob and Dynkin is another key

characterization.

Lemma 2.2.5 (Doob-Dynkin). Let X be an random object from (2, F) — (X, Z7). If Z -

(Q,0(X)) = (R, RB) is arandom variable, then Z = fo X forsome f : (X, Z°) — (R, A).

3In fact, this kind of abbreviation is commonly used. For example, when we say “let z € A”, we actually implicitly
assumes that A is a non-empty set.
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Conversely, if Z = foX and f : (X, 2) = (R, A), then Z : (Q,0(X)) - (R, B) isa
random variable.
In other words, a real-valued function Z is o(X)-measurable iff it can be written as

some function of X.
We include its proof here since it is the cornerstone to understand o (X).

Proof. The converse is trivial as compositions of measurable functions is measurable. Now
assume Z : (Q,0(X)) — (R, Z(R)). Consider first the case Z is an indicator function,
then a simple function and finally the general case. Here we only consider the indicator
function Z = 1. as the remaining procedure is standard. Since Z is o(X)-measurable,
Ceo(X)={X1A): Ae Z},sothat C = X"1(A) forsome A € 2. Let f = 14,

thenfoX:ﬂAoX:]lX_l(A):]lC:Z. Il

Remark 2.2.6 (The information of X). Intuitively, the information generated by X is all the
things which can be completely determined by X'; in other words, if Y is the information
generated by X and X happens, then we should know Y happens or not. This is exactly the
mathematical formulation Y = f(X). Therefore, o(X) is said to contain all the information

of X or simply said to be the information of X.

2.2.3 Applications to Stochastic Process

As said in the begining of the subsection, a stochastic process can be viewed as a R”-
valued random object. To illustrate this, we should first define R™ and then define a o-algebra
on it.

Let T be an infinite index set.

Definition 2.2.7. Let RT denote the space of all real-valued functions w on the interval T.

Let Z be the o-algebra generated by cylinders, i.e. sets of the form

{weRT: (W(ty),...,w(ty)) € A},
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where 0 < t; <ty <---<t,,t; € Tforalli=1,...,nand A € B(R").
A stochastic process X = {X;,t € T} is a random object from (£2,.%) to (R*, %Z). It

is easy to see that X is Z-measurable iff X is Z(R)-measurable for all ¢ € T.

Definition 2.2.8 (filtration). A filtration is an increasing sequence of o-algebra indexed by
T, {Z,t € T}, ie. F C Fyift <t.

The natural filtration of a stochastic process X = { X, t € T} is the filtration consists
of the induced c-algebras {c({X;,s < t,s € T}),t € T}. Here {X,,s < t,s € T}isa

truncation process of X.

Therefore, by Remark 2.2.6, the natural filtration of X = {X,, ¢ € T} could be viewed
as a sequence of information generated by the truncation process{ X, s < ¢, s € T}. For the

same reason, a filtration is also called an information flow.
2.3 Brownian Motion

A botanist named R. Brown observed the erratic motion of grains of pollon suspended
in a liquid. A. Einstein gave a mathematical formulation of the motion which can be sum-

marized as the following.

Definition 2.3.1 (Brownian motion). A real-valued Brownian motion (or named Wiener pro-
cess) is a real-valued stochastic process with time index T = R,, W = {W,,t € R,},

satisfying the following properties.
(1) Wy = xp a.s.;

(i1) (independent increment) W;, — W,,, W, — Wy, ---, W, — W, _, are independent

foralln >2and 0 <ty < --- < tp;

(iii) (stationary Gaussian law) WW; — W follows N (u(t — s),02(t — s)) for some p € R

and 0 > 0 for all 0 < s < t; and finally

(iv) W has continuous sample paths, i.e. t — W, is a continuous function on R a.s.

Ifzg =0,u=0and o = 1, then W is called a standard Brownian motion.
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Since R. Brown had “observed” such kind of process in the real world, such motion
should also exist in the world of mathematics; that is, there is indeed a stochastic process

satisfies Definition 2.3.1. In fact, there are at leat three ways to show its existence:

1. Wiener’s method ([Wiener, 1923]): first defines a pre-measure on the algebra of cylin-
ders. Then use Carathéodory Extension Theorem to extend the measure on the o-
algebra generated by cylinders. Finally show that the continuous functions with such

a measure is indeed a Brownian motion.

2. A method based on Kolmogorov extension theorem and continuity theorem. This

method would be explained in detail later.

3. Lévy’s interpolation method ([Lévy, 1939]): define a sequence of stochastic processes

iteratively and prove the limit of the process is indeed a Browian motion.

2.3.1 Kolmogorov Extension Theorem

The content of Kolmogorov extension theorem is the vadality to extend a class of mea-
sures on a finite dimensional spaces to a measure on an infinite dimensional space, provided

that the class is consistency.

Definition 2.3.2 (consistency condition). A family of probability measures 1, ¢, ., on R"
is said to satisfy the consistency condition if forall 0 < t; < ty < -+ < t,, A; € B(R"™),

Ay € BR" ) withi =1,...,n,

#’tl,...,tifl,l?;,tile,...,tn(Al X A2) = ILLtI,---7tn (Al X R X A2)7 (7)

where t: means that ¢; is delated.

This condition ensures different measures in the family to have the same value for dif-

ferent representations of the same set.

Theorem 2.3.3 (Kolmogorov’s Extension Theorem). Suppose with each 0 < t; < t3 <

o < ty, n > 1, there is a probability measure [, .+, on R". Assume the family satisfies

-----
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the consistency condition. Then there exists a unique probability measure P on the space

(RIO>) %) such that

.....

forall 0 <t; <ty <---<t,,n>1land A€ BR").

For a proof, see (Theorem 2.7.5, [Ash, 2000]).

Remark 2.3.4 (Existence of Brownian Motion). Foreach 0 < ¢; <ty < --- < t,,n > 1,

define a Markov kernel for each i = 1, ..., n by a normal density,

Py A) % / oyt — i1 | 2)dy, ®)
A

where
1 (y — . — pt)?

9(y, tlr) = Jonio exp {_T} :

Then there is a probability measure

556 ® Ptlfto ® e ® Ptnftn_l

on R", which satisfies the consistency condition. Therefore, by Kolmogorov’s extension
theorem, there exists a unique probability measure P as an extension. Then the finite marginal
distribution of (w(to), w(t1), . . . ,w(t,)) could be calculated. Use the standard transformation
method, one can find the distribution law of (w(ty), w(t;)—w(to), . .., w(tn)—w(t,—1)). Then
condition (1), (i1) and (ii1) in Definition 2.3.1 are be checked.

Remark 2.3.5. In fact, the above procedure, which defines Brownian motion by a Markov
semigroup, can be widely generalized to any Markov stochastic process. The (stochastic)

continuity of the defined process can be inherited from such continuity of the Markov semi-

group. For more details, see (Section 2.2, [Da Prato et al., 1996]).

It suffices to check condition (iv). However, the procedure is rather complicated. The

tool we shall use is the Kolmogorov’s continuity theorem.
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2.3.2 Kolmogorov’s Continuity Theorem

Definition 2.3.6. A stochastic process X; is called a version (or named modification) of X,
if P{X, = X;} = 1foreacht € T.

Theorem 2.3.7 (Kolmogorov’s Continuity Theorem). Let {X;,0 < ¢t < 1} be a stochastic

process. Assume that there exists constant «, 3 satisfying the inequality

E|X, - X,|* < K|t—s|'"F

forall 0 <t,s < 1. Then X, has a continuous version °.

For a proof, see (Theorem 3.3.8, [Kuo, 2006]) or (Appendix, [Evans, 2013]).

Therefore, if we take g = 0, u = 0 and 0 = 1 in Remark 2.3.4. Then it would satisfies
Elw(t) —w(s)[* =3t —s|*

since w(t) — w(s) is normally distributed wiht mean 0 and variance ¢t — s. By Kolmogorov’s
continuity theorem, it must possess a continuous version. Replace w by its continuous version
w if necessary, then it becomes a Brownian motion.

So far, we have illustrated the existence of Brownian motion.
2.4 Conditional Expectation

The concept of conditional expectation is the highlight of advanced probability theory.
It is an essential tool for the definition of martingale in §2.5. For this reason, many textbooks
only illustrate conditional expectation given a o-algebra. However, for many problems we
concern in the thesis, a rigorous definition for P{A | X = x} is needed. The material of this

subsection comes from (Chapter 5, [Ash, 2000]).

2.4.1 Classic Conditional Expectation

Commonly, there are two different ways to establish the concpet of conditional expec-

tation:

®More actually, the sample path of the continuous version is ~-Holder continuous, where vy € (0, a/3).
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1. via Radon-Nikodym theorem (Theorem 2.2.1, [Ash, 2000]); or

2. viewing as an image after projection in the Hilbert space L?((2) and then generalizing

the idea.
Here we follow the first way, which is less intuitive but much quicker.

Theorem 2.4.1 (Classic Conditional Expectation). Let Y be an extended random variable
on (Q,.7,P), 4 a sub-o-algebra of % . Assume that E(Y') exists. Then there is a function

(random variable) h: (Q,9) — (R, B(R)) such that

/YdP:/th
c c

forall C € 4. Furthermore, if h' is another such function, then h = b/, P-a.s.

We define E(Y | ¢), called the conditional expectation of Y given ¢, as h.

Proof. Let A\(C') = [,YdP. Check that it is a signed measure and absolutely continuous

w.r.t. P. Then the result follows from the Radon-Nikodym theorem. [

2.4.2 Conditional Expectation Given a Set

Theorem 2.4.2 (Conditional Expectation). Let Y be an extended random variable on (), % | P),
and X : (0, F) — (V,.7"), a random object. If E(Y') exists, there is a function g :

(Y, F") — (R, B(R)) such that for each A € .F',

/ YdP:/g(x)dPX(x). 9)
(XA} A

Furthermore, if h is another such function, then g = h Px-a.s.

We define E(Y | X = z) as g(x).

Proof. Let A(A) = | (xeA) Y dP. Check that ) is a signed measure and absolutely continu-

ous w.r.t. Px. Then the result follows from the Radon-Nikodym theorem. [

Conditional expectation includes conditional probability as a special case.
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Definition 2.4.3 (conditional probability). Let A € % and X : (Q,.#) — (V, %), a

random object. Then we define P(A | X = x) by E(14 | X = z).

The next remark gives another characterization of the conditional expectation given a

set.

Remark 2.4.4. Suppose we have g(z) = E(Y | X = z). If we define h(w) = g(X (w)), then

h=E(Y | (X)) since

/{XGA} ydp= /Ag(f)dl’ﬂx) = /{ e h(w)d P(w) (10)

by changing of variable. In this case, we shall usually write h = E(Y" | X) for convenience.

We can understand E(Y" | X) by either g(X) or E(Y | o(X)) 7.

The above remark tells us if we have the definition E(Y" | X = x), then we can use it to
define E(Y | X). And they essentially means the same thing. The next remark tells us the

converse is also correct.

Remark 2.4.5. In fact, we can also define E(Y | X = z) using E(Y | o(X)) with the help of
Doob-Dykin lemma. Since E(Y | 0(X)) is (X )-measurable, it can be written as a function

of X, say g(X). Then g(x) should be the same as E(Y | X = x) by (10).

A final remark is given, which ends the discussion of relationship between E(Y | X)
and E(Y | X = x).
Remark 2.4.6. Any conditional expectation given a o-algebra arises from a random object
X in this way by taking X to be the identity map from (2, .#) — (2,%). Then o(X) =
XHY) =9 sothatE(Y | 4) =E(Y | o(X)) =E(Y | X).

Another question is that: does the definition of conditional expectation (and conditional

probability) given a set agrees with our intuition in simple cases?

"The former understanding is accepted in most elementary course of probability theory, while the latter is commonly
accepted in advanced courses of probability.
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Example 2.4.7. (1) if X takes discrete value, we should have

AN{X =ux;})

P(A]X:xi):P(

(ii) if X is a continuous random variable with a density function, we should have ®

. L P{Yyedin{z—-h<X<z+h}) [ flz,y)
P(YGC‘X_QS)_}LI—{% P{z —h< X <xz+h} B CfX(at)dy'

The answers to the above two simple cases are of course “yes”’es. The proof can be
done by pluging in the r.h.s. of each above equality to (9) and then by the uniqueness of
conditional expectation.

Next example illustrates the reason why we may think the Markov kernel N (z, B) as
the probability of z goesto A: N(z,B) =u® N(B | X = z).

Example 2.4.8. Let (X, 27) and (Y, %) be given and N is a Markov kernel on (X, %), 11 is
a probability measure on (X, 27). Let X be the identity map on X so that Py = p. Then for

Ae Z,B e %, by the definition of tensor product,

4w N({X € A} x B) = / dyu(x) / Ls(z, )N (2, dy)

_ /A du(2)N(z, B).

Therefore N(z, B) = n ® N(B | X = x) by the definition conditional expectation.
2.5 Martingales

The importance of martingales and related topics can hardly be exaggerated!!”). How-

ever, in the thesis we only use it as an auxiliary tool. Thus the treatments in this subsection

would be brief.

2.5.1 Discrete-Time Martingales

Definition 2.5.1 (martingale). Let { X}, k € N} be a sequence of integrable random variables

on (2, .#,P) and {.Z, k € N} be a filtration; X}, is assumed .%-measurable for each k € N

*In fact, the so-called conditional density in elementary courses of probability hy|x (z | y) is defined as ?Xz—(g;
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(this is called adapted). Then sequence { X, k € N} is said to be a martingale relative to

7, (alternatively, we say {X,,, %, } is a martingale) iff for all n € N,

E(Xps1 | F) = Xo;?

a submartingale (resp. supermartingale) ift E(X,,,1 | %#,) > X,, (resp. E(X,11 | %) <

X,).

Definition 2.5.2 (stopping time). A stopping time for a filtration {%,,t € T} is a random

variable 7" such that {T" < t} € .%, foreach t € T.

Martingale convergence theorem, optimal sampling theorem and other related results
can be found in (Sections 6.3-6.7, [ Ash, 2000]); Doob’s martingale inequalities can be found

in (Chapter 26, [Jacod et al., 2003]).

2.5.2 Continuous-Time Martingales

Definition 2.5.3. A stochastic process {X;,t > 0} is a (continuous-time) martingale w.r.t.

a filtration {.%;,t > 0} iff it is adapted to the filtration, integrable and satisfies

EX; | Z] = X,

when 0 < s < t.

The notions of sub- and supermartingale can be similarly generalized.

The fact that most results in discrete-time martingale theory are also true in continuous-
time is based on Doob’s regularization theorem (Theorem 9.28, [Kallenberg, 2021]), which
states that any martingale w.r.t. a right-continuous and complete filtration admits a right-
continuous, left-hand limits (abbreviated as rcll or cadlag) version. For the corresponding
theorems we may need, see [Karatzas et al., 1991].

Lastly we need the concept of local martingale to describe the martingale-like process

but without integrability.

°In statements involving conditional expectations, the “a.s.” is always understood and will usually be omitted.
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Definition 2.5.4 (local martingale). A stochastic process { Xy, k € N} is a local martingale
if there exists a nondecreasing sequence of stopping time {7}, k € N} such that lim; T}, = oo
and each X,7, is a martingale.

2.6 It0 Integral

It6 Integral has been well-studied in many textbooks, for example [Kuo, 2006], [Evans,

2013] and [Dksendal, 2003]. Therefore we will only provide a brief description.

2.6.1 Construction of It6 Integral

Fix a Brownian motion {W;,¢ > 0} and let a filtration {.%#;,¢ > 0} be the natrual

filtration of W;.

Notation 2.6.1. We will use .#*(a, b) to denote the space of all stochastic process
ft,w) : [a,b] x Q@ = R,

where a <t < b, w € (), satisfying the following:

(i) (t,w)— f(t,w)is B x .F-measurable, where Z denotes the Borel o-algebra on [a, b];
(if) f(t,w) is adapted to the filtration {.%, }.
(i) E[[ f(t,w)2dt] < oo.
We need condition (i) to ensure that f; f(t,w)?dt is .7 -measurable by Fubini’s theorem so
that condition (iii) makes sense. Suppse X € .#2(a,b), if | X || & {E[f;X(t, w)?dt]}1/2,
then one can check the space is a Banach space.
The steps for the construction of It6 integral are:

1. Define the value of integral I (o) for elementary process o € .#*(0,T) as Riemann

sum.

2. Observe the It6 isometry: E(|I(0)[?) = E [ |o(¢)|?dt. The Lh.s. is the L*(Q2)-norm
of I(c) on L*(Q) and the r.h.s. can be regarded as the L*((0, 7)) x )-norm of o on
A*(0,T).
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3. Prove that the elementary process is dense in .#2(0,T) with L*((0,T) x Q)-norm.

4. Prove that lim,, I(0,,) converges in L*(2)-norm and define I(f) by lim,, I(o,,), where

o,, approximates f on .Z2(0,T).

For more details, see [It0, 1944], which is the original paper, or the textbooks listed in the
begining of this subsection.
Now consider /() &f f(f f(r)dW(r) as a stochastic process with a little abuse of nota-

tion. The following theorem might be one of the most important non-trivial properties.

Theorem 2.6.2. Suppose f € #*(0,T). Then the stochastic process 1(t) is a centered,

squared integrable, continuous martingale.

For a proof, see (Theorem 4.3.5, 4.6.1, 4.6.2, [Kuo, 2006]).
Previously, [ f(r)dW (r) makes sense only when f(s) = f(s,w) € .#>(s,t). Now

we extend the class of stochastic processes.

Notation 2.6.3. Denote .£?(a, b) (resp. £ (a, b)) the space of all stochastic processes
flt,w):[a,b] x Q2 =R

where a <t < b,w € (Q, satisfying the following:
() (t,w) — f(t,w)is B x . -measurable, where Z denotes the Borel o-algebra on [a, b];
(ii) f(t,w) is non-anticipating w.r.t. F;
(i) [ f(t,w)2dt < oo (resp. [ |f(t,w)|dt < o0) as.

The difference between £?(a, b) and .#?(a, b) is in condition (iii). For f € .#?*(a,b), we

require E[fjf(t,w)th] < oo thus fff(t,w)zdt < oo a.s.; thatis, #?%(a,b) C £*(a,b).

Remark 2.6.4. One can still define It6 integral for f € £ (a,b). However, we will lose

1. It6 isometry (but Burkholder-Davis-Gundy inequality is valid, see (Chapter 1, Theo-

rem 7.3, [Mao, 2008])); and
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2. the convergence in L2(2) of I(c,,) to I(f). Instead, we only have the convergence in

probability.

3. I(t) as a stochastic process would no longer be a martingale (because of the lack of

integrability) but a local martingale.

4. 1(t) is not continuous, but it processes a continuous version (or stronger, a continuous

realization).

2.6.2 1td’s Formula

Due to the fact of Brownian motion’s non-zero quadratic variation, there will be an

additional term for the chain rule of Itd integral !4,

Definition 2.6.5 (It6 process). An [t0 process is a stochastic process of the form

t t
X, =X, +/ fsdW, —|—/ gsds (11)

where a < t < b, X, is .#,-measurable, [ € £*(a,b) and g € Z(a,b).

It is convenient (and widely accepted) to write (11) by its symbolic shorthand

Theorem 2.6.6 (1t6’s Formula). Let X, be an It6 process given by (12). Suppose F(t,x) is

a continuous function with continuous partial derivatives 9L 2L gqnd 9
ot dx oz

Then F'(t, X,) is also an It6 process and

F F 10%°F
ar(t, X)) = 2 xa+ 2, xax, + 22

ot ox 2@“’ Xe)dX; - dX,

and we can calculate the symbols by dt - dt = 0,dt - dW, = 0 and dW, - dW, = dt, in other
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words, by substituting (12) into the symbolic shorthand,

tOF
F(t,X,) =F(a, X,) + / %(S,XS) [ dWV,

oF oF 10%F 5
—l—/a [(% (s, Xs) + Fr — (s, X5)9s 2W(S,Xs)fs ds.

See (Theorem 18.18, [Kallenberg, 2021]) for a complete proof in a much more general
case, which in fact includes the multidimensional case that we shall introduce proceedingly;
and (Theorem 4.1.2, [@ksendal, 2003]) for a sketch of proof, which is enough to understand
the idea of it.

The situations in multidimensions are similar. Let W (t) = (W4 (t),..., W,,(t)) denote
m-dimensional Brownian motion. If f;(t) € £*(a,b) and ¢;;(t) € £*(a,b) for each i, j,

then we can form the following n Itd process

dX; = fidt+gndWi+---+ g1, dW,,

: : : (13)
Or, in matrix notation,
dX(t) = fdt + gdV(¢), (14)
where
dX,(t) fi gin  Gim dWi(¢)
dX(@) = | : | f=]i]9=|: DA =
We can extend the It6’s formula to multidimensional case.
Theorem 2.6.7 (Multidimensional 1t6’s Formula). Suppose F'(t,x1, ..., x,) is a continuous
function on |a, b] and has continuous first-order and second-order partial derivatives %f , ng
ana’(%g8 - fori, g =1,.
Then
1
dF(t, X (t)) dt+Z—dX +5 Z dX;(t),  (15)
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where dt - dt = 0, dB;(t) - dt = dt - dB;(t) = 0 and dB;(t) - dB;(t) = 6;;dt; or in matrix

notation,
OF - 1 -
dE(t, X (1)) = 54+ (VxF)TdX (t) + §(dX(t)) (Hx f)dX;
—{ G+ (T 4 Tl (s )l bt + (VxF)gdW (),

where V x F' is the gradient of F w.rt. X and Hx F is the Hessian matrix of F w.r.t. X and

Tr is the trace operator.
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3. General Thoery for Finding Ergodic Measures

The aim of this section is to provide some general tools for finding ergodic measures.
Most of the preparatory results of showing ergodicity are provided with complete proofs.

In §3.1, we breifly introduce the meaning and equivalent characterizations of ergodicity.
In §3.2, we investigate in details on the structure of the set of invariant measures. One of the
key results is that the unique existence of invariant measure implies ergodicity. Therefore,
we shall focus on those Markov semigroups which process exactly one invariant measure.
§3.3 provides some sufficient conditions for the Markov semigroups that process invariant

measures and §3.4 for which of processing a unique invariant measure.
3.1 Ergodicity

Ergodic measure is a special member in the family of invariant measures. In this sub-

section, we shall give definitions for both of them.

3.1.1 Invariant Measure of Markov Semigroup

Assume that H be a Hilbert space and T = R or N.

Definition 3.1.1. Let (H, Z") be a measurable space. A probability measure . on it is said

to be invariant w.r.t. a semigroup P, € L(B,(H)),t € T iff

/ Prody = / dy (16)
H H

forallt € T and ¢ € B, (H).

Remark 3.1.2. It is clear that the above definition is equivalent of saying

HP(A) = p(A) (17)

for all t € T by the classic method; or

Pp=p (18)
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forall ¢ € T by Remark 2.1.13.

3.1.2 Ergodic Theorems

A basic fact for invariant measure w.r.t. a semigroup F; is that we can extend P; from
an element in L(B,(H)) to a strongly continuous (for each ¢ € L*(H, i), lim;_,o Py = )
semigroup of L(L?(H, 1)) (p. 381, Theorem 1, [Yosida, 1995]). Then P; could be view as
a linear operator on a Hilbert space, so that we can use the following result in the operator

theory on Hilbert space.

Theorem 3.1.3. Let E be a Hilbert space and T’ be a bounded linear operator on E. Let

on E. Assume that sup,, . || T"|| < oo. Then lim,, M, (z) exists for all x € E, denoted the

limiting value by M. (x). Moreover, M, € L(E), M2 = M., and M(E) = ker(I —T).

For a proof, see (Theorem 5.11, [Da Prato, 2006]).

Then apply the result to the average

def 1 4

forall o € L?*(H,u)and T > 0. We obtain the well-knwon Von Neumann’s ergodic theorem

(Theorem 5.12, [Da Prato, 2006]).

Theorem 3.1.4 (Von Neumann). limy_,o, M(T)p exists in L*(H, i), denoted by M.

Moreover, it is a projection operator on X and also

/ Moopdp = / edp.
H H

3.1.3 Characterizations of Ergodic Measures

Thanks to Von Neumann’s Theorem, the following definition makes sense.
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Definition 3.1.5 (ergodic, strongly mixing). Let ;o be an invariant measure for ;. We say

that

* 1 1s ergodic iff

in L?(H, uu)-sense for all p € L*(H, ),

* 1 1s strongly mixing iff

lim Py =¢
in L?(H, p)-sense for all ¢ € L?(H, 1),
where @ = (i) (the expected value of ¢).

Remark 3.1.6. (i) Ergodicity is often interpreted by saying that the “time average” con-
verges to the “space” average as T goes to infinity. If x4 is strongly mixing, then it is

erogdic by L’ Hospital’s theorem.

(i1) The main problems we focused in this thesis would be the existence and uniqueness
of invariant measure for a given system. Therefore we define ergodicity for measures.
However, for the problems that considering a fixed measure space and discuss the

systems, one may say the ergodicity for semigroups or operators.

Ergodicity can also be characterized as the following. In fact, this is a standard result
in ergodic theory. The discussion can be found in (Subsection 12.4.3, [Da Prato, 2014]).

Let 2 of be the sets of stationary points
SE{pe L(H p): Pip =} (19)

Definition 3.1.7. Let i be an invariant measure of P;,. A measurable set A is said to be
invariant for P; iff its characteristic function 14 belongs the stationary points . If u(A)

equals 0 or 1, we say it is trivial.
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Theorem 3.1.8. Let i be an invariant measure for P;. Then following statements are equiv-

alent:
(i)  is erogdic.
(ii) The dimension of the linear space 3. of stationary points in (19) is 1.

(iii) Any invariant set is trivial.

3.2 Structure of the Set of Invariant Measures
Let

AE (e By(H) : Prp = p}. (20)

Then it is clear a convex susbet of B, (H)*.
Theorem 3.2.1. Assume that there is a unique invarinat measure p for P,. Then i is ergodic.

Proof. Assume by contradiction that ;4 is not ergodic. Then p process a nontrivial invariant
setI',i.e. P,1r = 1r. Let

1
pir(A) = WM(A nr) 21)

forall A € #(H). Itis a probability measure and we are going to show it is another invariant

measure, 1.€.,
() = [ Pilo, M)
H

or equivalent (by classic method)

WANT) = / Py(x, A)pu(de).

r
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Since I is an invariant set,

/PtxA
r

/Pt z,ANT) (dx)+/Pt(x,AﬂFc)u(dx)

Pyi(z, ANT)pu(dz)

J
/Pt 2, ANT) (dx)+/rc Py(z, ANT)p(dz)

:/HPt(x,AﬂF),u(d:v) = pu(ANT),

by the invariance of w in the last step. [

Now we would like to prove the set of extreme points of A is precisely the set of ergodic

measures. We need the following lemma.
Lemma 3.2.2. Let i, v € Awith pergodic and v absolutely continuous w.r.t. p. Then p = v.

Proof. By the definition of ergodicity,

1 (T
lim —/ Prdt = p(I)
T Jo

T—00

in L? (). Therefore there exists a sequence T}, 1 oo such that

1 [T
lim — / Plpdt = p(D)
T 0

n—oo n

p-a.s. Since v < p, it holds v-a.s. Then integrate w.r.t. v, the Lh.s. equals v(I") by the
invariance of v; the r.h.s. maintains the same since v is a probability measure. Hence p(I") =

v(D). O

Definition 3.2.3 (extreme points). Let C' be a convex set. = € (' is said to be an extreme
point iff the existence of « € (0,1) such that z = ay + (1 — )z for y,z € C implies

T=1Y=2z.

Theorem 3.2.4. The set of all invariant ergodic measures of P, coincides with the set of all

extreme points of A.
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Proof. 1. Assume p is ergodic. If there exists o € (0, 1) such that p = apy + (1 — ) o

then clearly 1 < p, o < p. Hence pg = po = p.

2. Assume p is a extreme point. Let [' be an invariant set. Define ur as (21). We know

that yr 1s an invariant measure. Then one can easily check the following

p=p(D)pr + (1 = p(I)) pore.

Therefore ;(I") must equal to zero or one, which shows the erogdicity.

O

Theorem 3.2.5. If i1 and v are both erogdic, then . = v or pn L v (u and v are mutually
singular).
Proof. Assume ;1 # v. Let ' € #(H) such that u(I") # w(I'). Then by the definition of

ergodicity, there exists 7}, T oo and M, N Borel sets such that (M) = u(N) = 1 and

I
lim —/ PIr(x)dt = (),
0

n—oo n

for all x € M; and

1 (T
lim - / Par(x)dt = (D),
0

n—oo Ay
for all x € N. We can take the common sequence 7,, by replacing it with subsequence if
necessary. Then we must have M N N = &, i.e. ;1 and v are mutually singular. ]
3.3 Existence of Invariant Measure

In this subsection, we shall prove the famous Krylov-Bogoliubov Theorem and its con-

sequences, which are important tools to show the existence of invariant measures.
Definition 3.3.1 (Feller). Let P, be a Markov semigroup on H. We say P, is Feller iff
P,y € Cy(H) forany ¢ € Cy(H) and any ¢ > 0.

Lemma 3.3.2. Let u,v € M, (H) be such that

| etantdn) = [ playptan)

H

33



Jorall p € Cy(H). Then pp = v.

Proof. Note that p,, € B,(H) defined by

1, ifred
on(z) =< 1 —nd(z,C) ifd(z,C) <1/n
0 ifd(z,C)>1/n

is uniformly bounded by 1 and converges to 1 when C' is closed. Then the dominated
convergence theorem implies p(C') = v(C'). As the collection of closed sets generates the

Borel o-algebra of H, ;1 = v as claimed. O

Theorem 3.3.3 (Krylov-Bogoliubov). If P, is Feller and for some x, the sequence of mea-

sures

1

T 1 T
ILLT(I‘Q, G) = T/ Pt]l(;(l'o)dt = T/ Pt(CEQ, G)dt
0 0

is tight, then there exists an invariant measure i for P, on H.

Proof. By the well-known Prokhorov theorem, tightness implies weak compactness. There

exists { u7, }ren weakly converge to . That is, for ¢ € C,(H),

tim [ v, = [ vap
E Jr H

From the definition of ur,

/ﬂchT = pr(G) = %/OT {/ ILG(y)Pt(a:O,dy)} de.

/@/JduT = %/OT l/l/}(y)Pt(fro,dy)} d

for all ¢» € Cy(H). Using this,

Therefore

. 17 17
11]?1/}I¢duTk zhlgn?k/o {/w(y)Pt(xo,dy)} dt = hlgnT/O Pip(xo)dt.

k
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For any ¢ € Cy,(H), choose ) = P,p € C,(H) by Feller property, then

I
/ Pypdp = lim—/ Prysp(xg)dt
H k Tk 0

1 Ty Ty+s s
k 0 0

k Ty

=lim [ pdup, = / edp.

By Lemma 3.3.2, x4 is an invariant measure for ;. ]

3.4 Uniqueness of Invariant Measure

The following definitions is crucial for the existence and uniqueness of the invariant

measure, as we shall see later.

Definition 3.4.1 (strong Feller, irreducible, regular). Let P, be a Markov semigroup on H.
* P, is strong Feller iff P.p € Cy,(H) for any ¢ € B,(H) and any ¢ > 0.
* P, is irreducible iff P,1 gy, (x) > 0 forall x, 290 € H,r > 0 and any t > 0.

* P, is regular iff for fixed ¢ > 0, all probability measures {m;(z,-): © € H} are
mutually equivalent (two measures are equivalent iff 1 < v and v < p, i.e. A, =

A, where .4/, denotes the collection of sets of measure zero by /t.).

Theorem 3.4.2 (Hasminskii). Assume that the Markov semigroup P, is strong Feller and

irreducible. then it is regular.

Proof. To prove the regularity, it suffice to show that P,(x, A) > 0 implies P,(y, A) > 0 for

all z,y € H. Now assume P;(z, A) > 0. Pick h € (0,t). We have

Pz, A) = /th(%dz)Pth(Z’A)

so that P;_p,(z9, A) > 0. By strong Feller, there exists B(zg, ) such that P,_p(z, A) > 0 for
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all z € B(zo,7). Hence

Ph y7dz -Pt h(z A)

m\

/ Py(y,dz)P_p(z,A) >0
B(zo,r)
by irreducibility. D

Theorem 3.4.3 (Doob). Assume that the Markov semigroup P, is regular and processes an
invariant measure . Then p is equivalent to P,(x,-) for any t > 0 and x € H. Moreover,

is the unique ergodic measure for P,.

Proof. Note that

p(A) = /H Pi(y, A)p(dy).

Therefore the equivalence of 1 and P;(x, -) follows immediately by the definition of regu-
larity.

Let I" be the invariant set, with x(I") > 0, P,1r = 1. Since p(I") > 0, we must have
P1r(z) = Py(z,I') > 0, for all z € R” by equivalence. Then we obtain 1r(z) > 0 for all
x € R" so that 1 = 1. Hence p is erogdic.

If there is another invariant erogdic measure v. Then p must equivalent to v so that

(i = v by Lemma 3.2.2. [

Remark 3.4.4. Under the conditions of Doob’s Theorem, the conclusion of 1 can be stronger
than ergodicity. In fact, x is strongly mixing. The proof (Theorem 4.2.1, [Da Prato et al.,

1996)) is not that easy so that we only quote the result.
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4. Ergodicity of Monotone SODEs

We are here concerned with the study of the asymptotic behaviour of the Stochastic

Ordinary Differential Equation (SODE)

{dX(t) =b(X(t))dt + o(X(¢))dW (t) (22)

X(s) =mn,

where b : R? — R?, 0 : R? — R and X (t), W (t) € R%, n € L*(Q, Z,). Assume b, o are
both continuous maps.
First let us review some basic notions and inequalities in SODE theory. The outline of

this section would be presented at the end of §4.2, after the problem has been setted up.
4.1 Basic Notions and Inequalities in SODE Theory

Definition 4.1.1. An R?-valued stochastic process { X;, s < t < T'} is called a solution of

(22) if it has the following properties:
(i) {X;} is continuous and .%;-adapted.
(i) b(X;) € ZL'(s,T)and 0(X;) € L*(s,T).

(ii1) The following stochastic integral equation

t t
X, = 1o + / b(X,)du + / o(X,)dW, (23)
holds a.s. for ¢ € [s,T].

A solution { X, } is said to be unique if any other solution { X, } is indistinguishable from
{X.}, that is,

P{Xt — Xt,Vt c [S,T]} - 1

Notation 4.1.2. We shall use X (¢, s, z,w) (or X;*(w) when there are to many parentheses)
to denote the solution of SODE (22), where s, x means the SODE is initialized at s with value

x and t means at time ¢. If s = 0, then we simply write X (¢, z,w) (or X (w)) instead of
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X (t,0,z,w). Sometimes when there is no chance of ambiguity, we would only write X;(w).

We often omit to write w as the convention in probability theory.

The advantage of the notation X (¢, s, z, w) is that, when the initial value possesses ran-
domness, i.e. * = x(w) is a random variable, then there will be two different contributions
to the randomness of X (¢, s, x(w),w). Using our notation, those two kinds of randomnesses
are seperated clearly in mind.

In the following, we shall use 7, ( to denote a random initial value and z, y to denote a
constant.

The following two Gronwall-type inequalities are our main tools when finding bound-

aries. Their proofs can be found in (Section 1.8, [Mao, 2008]).

Lemma 4.1.3 (Gronwall’s Inequality). Let T' > 0 and ¢ > 0. Let u(-) be a Borel measurable

bounded non-negative function of [0, T, and let v(-) be a non-negative integrable function

on [0, T]. If

u(t) < c+/0 v(s)u(s)ds

u(t) < cexp ( /0 tv(s)ds)

forall0 <t <T, then

forall0 <t <T.

Lemma 4.1.4 (Bihari’s Inequality). LetT' > Oandc > 0. Let K : R, — R be a continuous
non-decreasing function such that K(t) > 0 for all t > 0. Let u(-) be a Borel measurable

bounded non-negative function on [0, T|, and let v(-) be a non-negative integrable function

on [0, T). If
u(t) < c+/ v(s) K (u(s))ds,
0
forall0 <t <T, then

u(t) <G (G(c) + /Otv(s)ds>
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holds for all such s <t < T that satisfies
t
G(c) +/ v(s)ds € Dom(G™1),
0

where

onr >0, and G is the inverse function of G.

4.2 Problem Setups and Outlines
It is well-known that if both b and o satisfies the Lipschitz condition, then the SODE
processes a unique solution. To be more generalized, we shall study (22) under the following

hypothesis.

Assumption 4.2.1 (Monotonicity). There exists \y € R such that for all z,y € R,

2 (x —y,b(x) = b(y)) + llo(z) = a(W)|* < Az —y[* (1 VIog|z —y| ).
Assumption 4.2.2 (Non-degenerate of o). There exists Ay € R, such that

sup [|o™!(2)]] < .
z€RC

We need the above assumption to prove the uniqueness of invariant measure and the

assumption below to prove the existence of invariant measure.

Assumption 4.2.3 (One side growth of b). There exists p > 2 and A3, A\, € R, such that
2 (2,0(z)) + [lo(2)[|* < =As 2" + s

We are going to prove several properties for the solution. Firstly in §4.3, we will prove
the existence and uniqueness of the solution under Assumption 4.2.1 by contraction prin-
ciple. The estimation is based on a specific type of Bihari’s inequality so we shall prove
that inequality at the first place. In §4.4, our goal is to prove that the P, generated by the

solution is indeed a Markov semigroup. We would see that the semigroup property relys
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Figure 1 This figure illustrates why we can use p, (?) to bound z?(1 V logz™!).

on both homogenity and Markov property. In §4.5, strong Feller property and irreducibility
are proved under an additional assumption, Assumption 4.2.2. Hasminskii’s theorem yields
the overlap of these two properties implies the uniqueness of invariant measure. Finally,
in §4.6, we prove the existence of invariant measure under another additional assumption,

Assumption 4.2.3. Then by Doob’s theorem, the unique ergodic measure exists.
4.3 Existence and Uniqueness of the Solution

We choose a perticular class of functions, p,, for K in Bihari’s inequality (Lemma
4.1.4). In order to treat the structure in Assumption 4.2.1, we define the following function.

For 0 < n < ¢!, define the following concave and increasing function (see Fig. 1 for

pn(xQ))5

[ zlogz™! 0<z<n
p”(w)_{ nlogn™ + (logn™' = 1)(x —n) = >, @4)

Lemma 4.3.1 (Bihari’s Inequality). Let g(s) be a strictly positive function on R satisfying

for some § > 0,
t
g9(t) < g(0) + 5/ po(g(s))ds
0
forallt > 0.
Then for all T' > 0, we have
(i) g(t) < g(0)*=*T) if g(0) < =0T,
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(i) g(t) < C(g(0)™T) + ¢(0)), for some C = C(T,6,n)

Jorallt € [0,T).

Note that if § < 0, then trivially g(t) < g(0) for all t € [0,T].

In the following, when we refer to Bihari’s inequality, it means the above inequality

instead of the original one.

Proof. For (i), we are going to use Bihari’s inequality with K" = p, 1(o,,. Then

0= [ o =L i =)

Then Dom(G~!) = (—o0,0) and

Gil(m‘) = €Xp {log U] exp(_x)} )
Direct calculation shows
G~(G(g(0)) + t) = g(0)=(1),

Note that the condition g(0) < 7°*0T) implies G(g(0)) + 6t < 0. The result then follows
by Bihari’s inequality.
For (ii), it remains to consider g(0) > "), Then

pn(z) < nlogn™ + (logn™' — )z
< g(0)™ " logn ™ + (logn ™" — x)a.

So
t
9(1) < 9(0) + Tag(0)™ gy~ + g™ —x) [ gls)ds.
0
Gronwall’s inequality yields the result. [
Note that if we apply It6’s formula to |Y;|?, we obtain
dlY;[* = ((b(Y2), Yo) + o (Y2)[[*) ds + 2 (Y5, 0(Y5)) AW, (25)
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if symbolically dY; = b(Y;)dt + o (Y;)dW;.

Theorem 4.3.2. Let n € L*(Q,.Z,). Under Assumption 4.2.1, SODE 22 with X (s) = n

processes an unique solution X;. Moreover, X; € .#*(s,T).

Proof. The idea of our proof is to use a fixed point argument in the space .#*([s, T']). Define

~(t, X) €y 4 /tb(Xu)dqu /ta(Xu)qu (26)

S

for X € #*([s,T]), t € [s,T]. Then it is a solution of (22) iff it is a fixed point of ~:
X = ~(X). Firstly we are going to show v maps .#*(s,T') into itself, then that it is a 0-
contraction. The result then follows by the contraction principle (Theorem D.2, [Da Prato,

20147]).

1. Similar to (25), It6’s formula yields that

t

t
(0P = Il + [ O00), X + () ds +2 [ (Xeuo(Xaw).
0 0
By Assumption 4.2.1,
t t
|7(t7X)|2 < |77|2 + )\O/ |XS|2(1 V log |XS|_1) + 2/ (X5, 0(Xs)dW) .
0 0
From Figure 1, there exists 7%(1 V logr~!) < p,(r?), so that
t t
6P < I+ 2o [ onlIX) 42 [ (X o(X)aw).
0 0
Now use the stopping time argument. Define
def
T, ={t €[0,T]:|Xy| > n}

and replace t by t A7,,. Itis clear by the a.s. boundness of X; on [0, T'] that 7, — T a.s.

Then take expectation and apply Jensen’s inequality with the notice of the concavity
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of py,
?)ds.

t
EJ7(t A, X)[2 < E[nf> + Ao / po(E | Xonr,
0

Finally, the result follows by Bihari’s inequality, letting n — oo and the help of Fatou’s

lemma.

. Arguing exactly the same as above except for replacing (¢, X) by v(¢, X) — vy(Y),

where Y is another element in .Z?(s, T'), we obtain
t
E ’7(t A Tn, X) - 7(t A Tn, Y>|2 S )‘0 / pn(E |XS/\Tn - YVS/\Tn’Q)dS'
0
By Bihari’s inequality, it follows that
E |7<t N TnaX) - 7(t A Tn>Y)|2 = 0.
Let n — oo, Fatou’s lemma implies

E|y(t, X) —~(t,Y)]> =0.

Therefore by contraction principle, there exists a unique X € .#?(s,T) such that X (t) =

v(t, X (t)). Moreover, t — X (t) is continuous. Therefore b(X;) € £*([s,T]) and o(X;) €

Z?(s,T). The uniqueness follows by the standard method using similar argument (we have

had shown the uniqueness over .#>(s,T') only). O

A similar argument yields the following, which I called the continuity w.r.t. initial value

in L*(Q) sense.

Theorem 4.3.3. Let X (t,s,x) and X (t, s,y) be the solution of corresponding SODE (22).

E|X(t,5,2) = X(t,5,y)]* < | — y[*D)

provided that x,y are close enough.
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4.4 Homogenity, Markov and Semigroup Property

In this subsection, we wish to prove that

Po(x) & E[p(X7)]

satisfies the semigroup property: P o P;(p) = Psi(p).

Define

Then P, = F,;.

The following property is an immediate consequence of uniqueness.

Lemma 4.4.1. Let ( € L*(Q, Z,). Then
X(t,s,¢) = X(t,r,X(r,s,())

holds for0 < s <r <t <T.

Proof. Since X (t, s, () is the solution,

X(t,s,¢) =C+ /t b(X5¢)du + /tU(XZ’C)qu

T t r t
:C+/ +/ b(Xff)du%—/ +/ o (X9 dW,
t

t
:X(T,S,C)+/ b(X;j’C)du—F/ o(X3)dW,.

From the uniqueness, X (¢, s,() = X (t,r, X(r, s,()). O

A useful relationship between X (¢,s,7n) and X(¢,s,z) is given below, where n €

L*(Q, Z,) and x € R%

Lemma 4.4.2. Assume that Assumption 4.2.1 holds and that

n= Z I‘kﬂA;w
k=1
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wherexy, ..., x, € Rland Ay, ..., A, are mutually disjoint sets in F such that Q0 = |J,, Ay.

Then

X(t78777) = ZX(ta Saxk)]]-Ak-

k=1
For a proof, see (Proposition 8.6, [Da Prato, 2014])!°.

We have the following preparation lemma for the proof of Markov property.

Lemma 4.4.3. For all ¢ € B,(R?) and all n € L*(Q), Z,), we have

E[(p(X(t,S,?])) | ﬁs] = Ps,t(p(n)

for 0 < s <t <T. Consequently,

Elp(X(,5,m))] = E[Pss0(n)].

Proof. [Da Prato, 2014]. Since the class of simple functions is dense in L*(Q, Z,), Cy,(R?)

is dense in B, (R?), it is enough to take 7 of the form

n= Z Tila,
k=1

where 1, ..., 7, € Réand Ay, ..., A, are mutually disjoint sets in .%, such that () = U, Ak

Once we have shown this, then we can find simple functions 7,, — n for all w satisfying

E[QO(X(tv S5, nn)) | ﬁs] - Ps,tgo(rr]n)'

Assume ¢ € C,(R?). As we have shown the continuity of X (¢, s, z) w.r.t. x in L? sense,
there exists a subsequence {7y, } such that X (¢, s, n,,) converges to X (¢, s,n) a.s. Letk — oo,
the result follows by bounded convergence theorem.

Now consider such case. By Lemma 4.4.2, we have

X(t,s,m) = ZX(t, s, xx)La,

k=1

19Although we have different hypotheses to the coefficients of SODE, the map ~ defined in (26) are both contractions.
Therefore the lemma holds in our situation.

45



for 0 < s <t <T. Consequently,

n

§0<X(ta S, 77)) = Z @(X(tﬂ Sy xk))]]‘Ak

k=1

since their domains are disjoint, which implies
Elp(X(t,5,m) | #] = 3 Elo(X(t,5,20) 1, | 1]
k=1
Since 14, is .% -measurable and ¢ (X (¢, s, z)) is independent of .%,, we have
E[p(X (L, s,21)) 1, | Fs] = Psap(zr)La,
by the property of conditional expectation. In conclusion,
Elp(X(t,s,m)) | Fi| = Poap(n). O
Theorem 4.4.4. Let 0 < s <r <t < T and p € B,(R?). Then we have
P pp(x) = E[Pip(X (r, s, 7))].

In other words, P p = P; . P, 1.

Proof. By Lemma 4.4.3, we have
B[P p(X(r,s,2))] = Elp(X (¢, 7, X(r, 5, 7)))] = E[p(X(t, 5,2))] = Perp(x).

Since E[ P, ;¢p(X (r, s, x))] = Ps,[Pr1p(x)], the result follows. O

Theorem 4.4.5 (Markov Property). Let 0 < s < r <t < T and let n € L*(Q, Z,). Then

for all ¢ € By(RY) we have

Elp(X(t,5,m)) | #:] = Frup(X(r,5,1)).
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Proof. Set ( = X(r,s,n). Then by Lemma 4.4.3, using Lemma 4.4.1,

E[SO(X(tS»??)) | gr] :E[SO(X(t7S’X<T>S>77))) | yr]
:E[(p(X(t,T, C)) | yr] = Pt,MO(C)

and the conclusion follows. ]
The solution is time-homogeneous in the following sense.

Theorem 4.4.6. The solution X" is time-homogeneous, i.e. {X",} and {X;""} have the

same distribution. In other words, Ps 51y, = Py, = P

Proof. [@ksendal, 2003]. On one hand,

s+h s+h
X3, =x + / B(X5)du + / o (X5 dW,

Letv=u—soru=v+s

h h
R AL CATTRYY RIS CEAL
0 0

Let W, = W,is — Wy. Check that AW, = ApWois

h h
ot [ WX+ [ o)A
0 0
Here W, is a Brownian motion started at 0 a.s. On the other hand,
h h
Xp* =x +/ b(X2*)dv +/ o(X5%)dW,,.
0 0

As W, and W, have the same distribution, { X", } and { X"} also have the same distribution

by the uniqueness of the solution. [
Theorem 4.4.7. P, defines a Markov semigroup (not necessarily strongly continuous).

Proof. We have shown that Py ;0 = FysPs st in Theorem 4.4.4. By homogenity,
; s 5+ y genity

P, s++ = P, and the conclusion follows. O]

4.5 Uniqueness of Invariant Measure

The proofs in this subsection follow [Zhang, 2009].
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4.5.1 Strong Feller Property
For convenience, we denote z/|z| by Z for z # 0.

Proof of Strong Feller Property. The proof of strong Feller property consists of three steps.

In Step 1, we prove that the coupling equation

(27)

4V (1) = (X (O)dt + a(X(t) — V(1)) - Tyerdt + o(¥ (£))dIW ()
Y (0) = yo,y0 € RY,

where

def _
a(z) = |wg — yo|* - Lo - 2

called the coupling function and
T inf{t > 0: |X(t) = Y(¢)] = 0}

called the coupling time, is solvable. In Step 2, we use [t6’s formula and Lemma to estimate
the coupling time. In the last step, we use Girsanov’s theorem (Theorem 8.9.4, [Kuo, 2006])

to find the estimate of

| Prop(z0) — Pro(yo)l - (28)

Now we start the proof.

1. Considering the following equation

{dY: = b(Y;)dt + ac(X, — Y)dt + o (V) dW, 29)

YE)G = Yo, Yo € Rda

where

ae(z) = |zo — yo|™ - fe(]2]) - Z,

fe : Ry — [0, 1] is smooth and equals 1 when > ¢€; equals 0 when r € [0, €/2]. Then

the SODE (29) possesses a unique solution since
lac(z) — a.(2)] < Clz — 2|
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The reason is that z +— Z is 4/e-Lipschitz when z > €/2:

z— 7| = z_ 2
lz| ||
R 2 2 2
|zl 2] J2] ]
/_
B IR I
|2| |2|[ ']
4
< |z =2
€

Therefore we have the solution Y. Define
def €
T€:/{t>0:|Xt—YH§€}.

Then for any € < ¢, we have Y, = Y, when ¢ < 7. by uniqueness. Comparing (27)
and (29), we have Y, = Y when t < 7.. Hence 7 = lim. | 7.. Then Y is well-defined

ont < 7. Whent € [1,T],let Y; = X;. Then it is clear that Y; solves (27).

. Let Z, = X; — Y;. Apply It6 formula to the function » — /|r|?> + ¢ and let ¢ — 0.

Then
el =0l = [ (206~ o))
5[MMawﬁwﬂaﬁua—mn»+WM@—dnmﬂw
_ jﬁtAT<Z?8,a(zg)>(is-—'j{tAT(zlzgl)‘l-I[a()fs)-— o(Yy)](Zs)|"ds

)\ tAT B
<3 [ 120V g |2 s~ faw — l"(0 A 7).
0
Note that there exists an 0 < 1 < e~! such that

r(lv logr‘l) < py(7)
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for all » > 0. Taking expectations yields that

A tAT
E|Zin:| <|zo — vo| — |0 — vo|* -E(t A T) + EOE/ pn(|Zs|)ds
0

tAT
<fro = ol ~ 2o = wl" B AT+ 5 [ pyfE|Zuns s,
0

where the second step is due to Jensen’s inequality.

Using Bihari inequality, we get that for any ¢ > 0 and |zq — yo| < n*°7/2 A1,
E ‘Zt/\Tl S ’-TO - yo‘exp(—)\ot/2)7

where we also use the fact that p,, is increasing. Then

Nt

E(t AT) <|zo — Yo" + 9

po(lzo = yo|PA2) - zg — yo| 7. (30)

. Let

TAT

1 TNAT
Rr—e | [ myaw - [ Y Pas
0

0

and

tAT
W, =W, +/ H(X,,Y,)ds,
0

where H(x,y) = |zo — vo|” - [0(y)] ‘2 — 3. Then
[H (2, 9) > < |20 =y o)™ < |20 — w0l ™ - A3,
By Novikov condition (Remark 8.7.4, [Kuo, 2006]), E R = 1 and
E R} < exp(TA |20 — yo[*).

Then

| Pro(zo0) — Pro(yo)|
= |E[p(X7)] — E[p(X7)]| = [E[p(X7°)] — Elp(Y2")]]
=E|[p(X7°) — Rro(Y0)] - Irsr| + El[0(X7°) — Rro(Y0)] - Irer|.
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We have
E|[p(X7") = Rro(Y7°)] - Irs| =E|[p(X7°) — Rro(X7)] - 1|
<llello - E1 = Rr|.
Since

(B[1— Ryl =ER2 — 1
< exp(T/\§|x0 — y0|2a) -1

<TN?|zg — yo** exp(TA|xg — yo|**)

ZCT,,\,n’ : ’370 - yoyza

for |29 — yo| < 1’ (as o will be chosen w.r.t. \g and 7', we omit it from the subscript

of (), we obtain the estimate for the first term. For the second term,

(E[(1+ Rr) - Lr>7])® <(B|1+ Rrl*) - P(7 > T)
=(B3+ERNP(2T AT)>T)
:OT,)\OW” E(QT VAN 7’).

By L’ Hospital’s thoerem,
EQT AT) < Clag — y0|exp(—>\0T/2)/2‘
Combining two estimation, we obtain
|Pro(xo) — Pro(yo)| < Croag - |20 — y0|eXp(—)\oT/2)/4.

Thus Pr is strong Feller.

4.5.2 Irreducibility

For proving the irreducibility of P,, it means to prove that for any zo € R%, T > 0 and

yoeRd,CL>0,

Pr(zo, B(yo, a)) = P(|X7(z0) — yo| < a) > 0.
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Proof of Irreducibility. Lett; € (0,T), whose value will be determined below. Let € > 0.
Set

def
€ =
th — th : ]]-|Xt1|§e*1-

Then

mE|X;, — X, |* = 0.
€l0

Define Y; for s € [t1,T] as the following:

T—s s—1
Ve "% xe 270
s S p g T W

satisfies Y\ = X¥

£» YT = yo and the following relation:

t t
Y= X§ + / b(Y)ds + / heds

t1 t1
fort € [t1,T], where

Yo — Xti

def
he &
5 T—1t

= 0(Y).

Consider the following SODE on ¢, T':

t t t
XE=X,, + / b(X)ds + / heds + / o (XE)dW,.

t1 t1 t1

If we define

Xte - Xt
fort € [0, ], then for any ¢ € [0, 7],
t t t
X = w0+ / b(XE)ds + / heTgor,ds + / (X)W,
0 0 0

Now define

t
We =W, + / Heds
0

and

T 1 T
w—ep | [ taw - g [ lpas,
0 2 0
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where

HEE 1oy, [0(XO] MRS

Note that by Assumption 4.2.2 and the continuity of b,
|H§’ < )‘2’h§| < C)\z,e,tl'

By Noviki condition, ERS. = 1, P(R5, > 0) = 1 and W is a d-dimensional Brownian
motion under RS - P. Thus X$(zo) has the same law as X7(z) in different probability

measure. Due to the equivalence, it suffices to show
P(| X7 (x0) — yo| > a) < 1.
Set Z; = X; — Y,°. By Itd’s formula, we have

t
E|Z;]? =E|X,, — X[ |” +/ E (2(Z5,b(XS) = b(XS)) + [|o (X)) ds
t1
t

t
=E|X, — X; [P+ Ca/ E(|YS]* +1)ds + Cx\o,a/ E(|Z*(1Vlog|Z|™"))ds.

t1 t1

We have,

t
/ B |YS2ds <2(T — £)(E| X2 + [yol?)

t1

SQ(T - tl)(CT,xo,Ao)\l + |y0|2)'

By Bihari’s inequality,

€ . xp(—Cy T
]E|‘>{T_y0|2 S |:E|Xt1 _Xt1|2+O(T_t1>j|e p( Ao )

Hence
€ 1 € 2
P(|X7(20) = %0l > a) < — E|X7(20) — ol
1 c exp(—Cx,,aT)
< = [E1X;, — X[ [P+ C(T — )]0 o/
Let ¢ close to T and choose ¢ to be sufficiently small, the result follows. O
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4.6 Existence of Invariant Measure

The following theorem is a consequence of Krylov-Bogoliubov theorem, which is fre-

quently used to find invariant measures.

Theorem 4.6.1. Let H be a Hilbert space. Assume there exists some xo € H and a constant

C = C(xo) > 0 such that

%AEW@@@HSa%)

forallt >0, where V : H — [1, 00| is a Borel function whose level sets
K, d:ef{x :V(z) <a}

are compact for any o > 0. Then there exists an invariant measure for X.

Proof. Recall the definition of yi7 in Theorem 3.3.3. Given € > 0, let a(e) = C/(z0)/e, then

the level set K. satisfies

pr (o0, Kooy :% /oT /v(y>>a(e) Filo, dy)dt
sy [ [
:/MM@E% [%WMMWWS&

Hence {11 (o, -) } is tight, which ensures the existence of invariant measures. U

Nl

Remark 4.6.2. When H = R, the condition lim, .., V() = oo could replace the compact-
ness of level sets in Theorem 4.6.1. The reason is that lim, .., V' (z) = oo means that for
every M > 0, there exists R > 0 such that for |z| > R we have V(z) > M, so that we
can always find Bg(z)” C {V(z) > M}. Consequently, we can choose Bx(z) instead of

{V(z) < M} in the proof of each statement.

Proof of Uniqueness. Using It6’s formula, we have by Assumption 4.2.3 and Hoélder’s in-
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equality

dE|X,|?

= B(2(X0,b(X) + [l (X))

< —ME[XiP+ M\
< =3 (B1X2)™% + s

Hence forall ¢t > 0

1 t
—/ E|X,|> < )\
tJo

The result follows by Theorem 4.6.1. [
We summarize our results as the following theorem using Doob’s theorem.

Theorem 4.6.3. Assume Assumption 4.2.1-4.2.2 holds. Then the semigroup of the solution
of SODE (22) is strong Feller and irreducible. If in addition, Assumption 4.2.3 holds, then

the solution is strongly mixing thus erogdic.

(This is the end of the thesis, 4~ 5€)
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