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单调型随机常微分方程的遍历性分析

刘之洲

（数学系 指导教师：刘智慧）

[摘要]：本文的主要目的是研究在非 Lipshcitz 条件下随机常微分方程

（SODE）的性质，特别是其遍历性。为此，本文第二节从概率论的基本概

念Markov核和Markov半群出发，并简要介绍了随机微积分（Itô积分）。

另一方面，我们还需关于给定Markov半群下遍历测度的一般理论，这是

本文第三节的主要内容。在第四部分中，我们对一类系数非 Lipshitz条件

的 SODE进行了分析，证明了其解的存在唯一性、齐时性、Markov性和

半群性质。最后，我们通过分别证明强 Feller性和不可约性，我们得到了

不变测度的唯一性；利用第三节给出的 Krylov-Bogoliubov定理的应用证

明了不变测度的存在性；由 Doob定理，这说明了解的遍历性。文中出现

的所有结果均非原创。文章的价值在于其系统地研究了单调型随机常微

分的方程的遍历性，为未来进一步研究该类型的方程提供了参考。

[关键词]：不变测度；单调随机微分方程；非 Lipshcitz条件；半群性质；

遍历性
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[ABSTRACT]: The aim of this paper is to investigate the properties, espe-

cially ergodicity, of Stochastic Ordinary Differential Equations (SODEs) under

non-Lipschitz conditions of coefficients. To achieve this, we start from the

basic concept in probability theory such as Markov kernel and Markov semi-

group, and briefly illustrate the ideas of stochastic calculus (Itô’s integral). On

the other hand, we also need a general theory for finding ergodic measures of

a given Markov semigroup, which is the content of the third section. In Sec-

tion 4, we analyze a class of non-Lipschitz SODEs and prove the existence,

uniqueness, homogenity, Markov and semigroup properties of their solutions.

Finally, we prove the uniqueness of the invariant measure through showing that

it is strong Feller and irreducible; and prove the existence of invariant measure

utilizing Krylov-Bogoliubov theorem. By Doob’s theorem, the result follows.

None of the results appeared is claimed for originality. The value of the thesis is

on the systematic analysis of the ergodicity of monotone SODEs, which gives

a reference for future studies on this type of equation.

[Key words]: Invariant Measure, Monotone SODE, Non-Lipschitz Condi-

tion, Semigroup Property, Ergodicity
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1. Introduction and Outlines
Description of a system using probability would make it more precise, however, more

complex, simultaneously. In standard ergodic theory, the dynamic systems are deterministic;

that is, given an x in the phase space of the system, its position would be at Ttx after time t.

There is no possibility for x to go to other places, even a mistake of small ϵ. However, no

matter how simple a system is, as long as it exists in real world, it will “make mistakes” by

disturbance. Therefore we define the Markov kernel (to be studied in §2.1) Pt(x,A), which

is the conditional probability (to be studied in §2.4) of X goes to A after time t given it

started at x.

Although we can describe the system abstractly by a Markov kernel, it is generally im-

possible to solve it implicitly; that is, obtaining a mathematical formula of Pt(x,A). How-

ever, intuitively, for a “regular” system, if we observe it for a sufficiently long time, we

should obtain all the information of it. Such hypothesis is called ergodicity (to be studied in

§3.1) — time average equaling space average.

In this paper, we shall focus on a purticular class of systems which are generated by

the solutions of a class of SODEs (under non-Lipschitz conditions). The Lipschitz case has

already been well-studied in [Da Prato et al., 1996]. Our non-Lipshitz conditions, although

had been studied as well, is a trendency in recent studies. We need some preparatory work

before having a close look at it.

Generally speaking, Section 2 provides us both of tools for the study of Markov semi-

group and SODEs and section 3 studies the methods of finding ergodic measures for a given

semigroup. The main results are

• existence and uniqueness of invariant measure(to be studied in §3.1) imply ergodicity

(Doob’s Theorem 3.4.3);

• strong Feller property and irreducibility imply uniqueness of invariant measure (Has-

minskii’s Theorem 3.4.2).
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Therefore, provided that the solution is indeed a Markov semigroup, we only need to show

three properties to achieve our goal, namely the existence of invariant measure, strong Feller

property and irreducibility.
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2. Essentials in Probability Theory
For the readers’ convenience, the mathematical preliminaries in probability theory are

introduced in this section. The representation style of this section is well-designed: for those

are highly related to the understanding of our main object but merely mentioned in standard

textbooks, rigorous mathematical treatments are implemented; for the others, we will only

provide a brief description.

Generally speaking, in §2.1-§2.3, we introduce Markov kernels, semigroups and pro-

cess, which will be needed for the analysis of the problem, and §2.4-§2.6 provides the neces-

sary tools to the setup of our problem (to define an SODE). In §2.1, a probabilistic transport

is described in both kernel and semigorup languages. Tensor product theorem helps us to

define a probability measure on a finite dimensional space with a given transport. In §2.2,

we investigate on infinite dimensions and make clear the widely-accepted but ambiguous

terminologies in stochastic process such as information flow. These are essential to help un-

derstand the mathematical languages in human words. Then we move on to §2.3 to extend

the finite dimensional probability measure to infinite dimensions, which explains the exis-

tence of Brownian motion. We also remark that this can be generalized to the construction

of any Markov process. In §2.4, the connection between two kinds of conditional expecta-

tion is illustrated clearly. Furthermore, we point out that if we use tensor product theorem

to build the probability measure, it can indeed be understood as conditional probability. We

give the definitions for both distrete- and continuous-time martingale in §2.5. And finally

in §2.6, we breifly discuss the construction of Itô integral and state the well-known formula

established by Itô, which in my opinion is the marrow in his theory and would be helpful to

the estimation of solutions in the main part of the thesis.

2.1 Markov Kernel and Markov Semigroup

In this subsection, we shall introduce the idea of transition in both the language of kernel

and semigroup, which is not included in some standard textbooks of probability theory. The

materials could be found in Chapter 1 of [Douc et al., 2018]. The beautiful notation makes
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it easier for us to illustrate the ideas of in both Markov chain and Markov process.

Since we are in the universe of probability, we only care for Markvo kernel. However,

it should be remarked that similar results in this section hold for σ-finite kernel[3].

2.1.1 Markov Kernel and its Corresponding Operator

There are two mathematical languages to describe a probabilistic transport: kernel lan-

guage and semigroup language.

Definition 2.1.1 (Markov kernel). Let (X,X ) and (Y,Y ) be two measurable spaces. A

Markov kernel N on X × Y is a mapping N : X × Y → [0, 1] satisfying the following

conditions:

(i) for every x ∈ X, the mapping N(x, ·) : A 7→ N(x,A) is a probability measure on Y ;

(ii) for every A ∈ Y , the mapping N(·, A) : x 7→ N(x,A) is a measurable function from

(X,X ) to ([0, 1],B)1.

Remark 2.1.2. We can understand a Markov kernel N(x,A) as the probability of x going to

A with the help of N . For a reason, see Remark 2.4.8.

Remark 2.1.3 (Probability measure seen as Markov kernel). A probability measure ν on a

space (Y,Y ) can be seen as a Markov kernel on X×Y by definingN(x,A) = ν(A) for all

x ∈ X. In this case, our previous understanding does not make sense since all the probability

of x goes to a fixed set A equal. We can understand it as the initial measure on (Y,Y ); that

is, a given probability measure before transportations happen.

Notation 2.1.4. LetN be aMarkov kernel onX×Y and f ∈ Bb(Y) (the set of all real-valued

bounded functions on Y). A function FNf : X → R is defined by

FNf(x)
def
=

∫
Y
N(x, dy)f(y). (1)

Notice that FN1A(x) = N(x,A), for A ∈ Y .
1B will always denote the Borel σ-algebra of the corresponding metric space. In this case, B = B([0, 1]).

4



By Remark 2.1.3, we can consequently define Fν similarly,

Fνf(x) ≡
∫
Y
ν(dy)f(y),

for all x ∈ X. Since the function Fνf(x) is a constant, we denote it simply by Fνf . Note

that this is equivalent to Eν(f).

The following lemma ensures the measurablity of Nf .

Lemma 2.1.5. Let N be a Markov kernel on X× Y . Then

(i) for all f ∈ Bb(Y), FNf ∈ Bb(X);

(ii) |FNf |∞ ≤ |f |∞.

Proof. Write down the definition to check that FNf is X -measurable when f is a simple

function. Then for f ∈ Bb(Y), there exists a sequence of functions fn converges pointwise to

f by the approximation theorem. Then by the dominated convergence theorem, FNf(x) =

limn FNfn(x) for all x ∈ X. Therefore FNf is X -measurable as being the pointwise limit

of a sequence of measurable functions. Finally, from

FNf(x) =

∫
Y
f(y)N(x, dy) ≤ |f |∞

∫
Y
N(x, dy) = |f |∞,

we obtain |FNf |∞ ≤ |f |∞.

Notation 2.1.6 (Indentify FN withN ). Thanks to the lemma, FN becomes an bounded linear

operator from Bb(Y) to Bb(X); in other words, every Markov kernel N(x,A) has a natural

embedding to L(Bb(Y),Bb(X)) (L(X,Y ) denotes the space of bounded linear operator from

X to Y . If X = Y , then simply denoted by L(X).) by N 7→ FN . Moreover, if the Markov

kernel is just a probability measure ν, then Fν can be viewed as a linear functional.

With a slight abuse of notation for the convenience of representation, we will use the

same symbol for both the kernel and the operator 2 ; that is, we will identify FN with N .
2Although it sounds unreasonable, we have met such abusion already in Linear Algebra, when we identify matrix A

with the linear map induced by A.
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Thus the notation FN would be abandoned proceedingly.

The following lemma provides a useful tool to verify a construction of operator being

a Markov kernel.

Lemma 2.1.7. Let M : Bb(Y) → Bb(X) be an additive (M(f + g) = Mf + Mg) and

homogeneous (M(αf) = αMf ) operator such that limnM(fn) = M(limn fn) for every

increasing sequence {fn, n ∈ N} of functions in Bb(Y). Furthermore,M(1Y) = 1. Then

(i) the function defined on X × Y by N(x,A) = M(1A)(x) for x ∈ X and A ∈ Y is a

Markov kernel;

(ii) M(f) = Nf for all f ∈ Bb(Y).

Proof. 1. Since M is additive for each x ∈ X, the function A → N(x,A) is additive.

σ-additive then follows by the monotone convergence property. Write down the defi-

nition of N(x,A) being a Markov kernel to finish the proof.

2. To show M(f) = Nf for all f ∈ Bb(Y). Consider firstly f being simple functions

and then apply dominated convergence theorem.

2.1.2 Compositions of Kernels, Markov Semigroup

Theorem 2.1.8 (Compositions of kernels). Let (X,X ), (Y,Y ) and (Z,Z ) be three mea-

surable spaces and letM,N be two kernels onX ×Y and Y×Z respectively. Then there

exists a kernel on X × Z , called the composition ofM and N , denoted byMN , such that

for all x ∈ X , A ∈ Z and f ∈ Bb(Z),

MN(x,A) =

∫
Y
M(x, dy)N(y, A).

Furthermore, MNf(x) = M [Nf ](x). Consequently, the compositions (when there are

more than three kernels) of kernels are associative.
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Proof. The kernelsM and N define two additive and positively homogeneous operators on

Bb(Y) andBb(Z). Then it is easy to check thatM◦N is additive and positively homogeneous,

where ◦ denote the usual composition of operators. Themonotone convergence property also

holds for M ◦ N . Therefore by Lemma 2.1.7, there exists a kernel, denoted by MN , such

that M ◦ N(f) = (MN)(f) for all f ∈ Bb(Z). To conclude the proof, it remains to write

down the relationship between the kernel and its relating operator.

Remark 2.1.9. (i) As Remark 2.1.2, we can understand MN(x,A) as the probability of

x goes A with the help of N thenM .

(ii) From Remark 2.1.3, as a corollary, if ν ∈ M1(X ) (the set of all probability measures

on (X,X )), then there exists a probability measure νN ∈ M1(Z ) such that

νM(A) =

∫
X
ν(dx)M(x,A). (2)

Similarly, νM can be understood as the result measure after transported by M with

initial measure ν.

Remark 2.1.10. Given a Markov kernelN on X×X , we may define the n-th power of this

kernel as the n-th compositions. Note that the associativity of the compositions yields the

Chapman-Kolmogorov equation:

Nn+k = Nn ◦Nk (3)

or equivalently

Nn+k(x,A) =

∫
X
Nn(x, dy)Nk(y, A). (4)

Equation (3) is called a semigroup structure. Formally, we have the follwing definition.

Definition 2.1.11. Let T = N or R+. A Markov semigroup {Pt, t ∈ T} on Bb(Y) is a

mapping T → L(Bb(Y)), t 7→ Pt such that

(i) P0 = Id, Pt+s = Pt ◦ Ps for all t, s ∈ T.
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(ii) For any t ∈ T and x ∈ Y, there exists a probability measure πt(x, ·) ∈ M1(Y) such

that

Ptφ(x) =

∫
Y
φ(y)πt(x, dy)

for all φ ∈ Bb(H).

(iii) When T = R+, for any φ ∈ Cb(H) (the set of continuous and bounded functions on

H) (resp. Bb(H)) and x ∈ H , the function t 7→ Ptφ(x) is continuous (resp. Borel

measurable).

It is easy to see π0(x, ·) = δx for all x ∈ Y; and πt+s(x,A) =
∫
E
πt(x, dy)πs(y, A).

Very often, (iii) is not required in the definition of Markov semigroup Pt. In this case

condition (iii) means that Pt is stochastic continuous (Definition 5.1, [Da Prato, 2006]).

Remark 2.1.12. When T = N, the semigroup can be constructed by only one Markov kernel.

It is immediate, from (1) and (3), that {Nk, k ∈ N} is a Markov semigroup, provided thatN

is a Markov kernel.

However when T = R+, the time index is continuous. We are required to have a

sequence of Markov kernels satisfying πt+s(x,A) =
∫
E
πt(x, dy)πs(y, A). Since we abuse

the notation (Notation 2.1.6), πt(x, ·) would be written as Pt(x, ·) for a semigroup induced

by a Markov kernel.

Remark 2.1.13. LetX,Y be metric space so that Bb(X),Bb(Y)would be Banach space (The-

orem 4.9, [Robinson, 2020]). Now in the view point of semigroup, (2) is equivalent to

νM(f) =

∫
X
Mf(x)ν(dx) = ν(Mf).

SinceM ∈ L(Bb(Y),Bb(X)) and ν ∈ Bb(X)∗ (here the star means the dual space), there is a

adjoint operatorM∗ ∈ L(Bb(X)∗,Bb(Y)∗) such thatM∗ν(f) = ν(Mf).

This remark emphasises that we could obtain similar expression as the composition in

kernel language using only the language of semigroup. Wewill continue the discussion when

the concept of invariant measure is introduced.
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2.1.3 Tensor Products of Kernels

The compositions of kernels allow us to integrate on the middle steps of “transports”

and care only on final effects the overall transports made, while the tensor product of kernels

gives us the full information at each step.

We must deal with the measurablity3. Ey here means the section {z ∈ Z : (y, z) ∈ E}.

Lemma 2.1.14. Let (Y,Y ) and (Z,Z ) be twomeasurable spaces andN be aMarkov kernel

on Y× Z . Suppose 1E, f ∈ B+(Y ⊗ Z ) (recall that Y ⊗ Z means σ(Y × Z )).

(i) Ey ∈ Z for all y ∈ Y.

(ii) N(y, Ey) is Y -measurable.

(iii)
∫
Z f(y, z)N(y, dz) is Y -measurable.

Proof. 1. Define

G1
def
= {E ∈ Y ⊗ Z : Ey ∈ Z }.

Then write down the definition to check G1 is a σ-algebra. On the other hand, if A ∈

Y , B ∈ Z , then (A × B)y = B if y ∈ A and (A × B)y = ∅ if y /∈ A. Thus

A×B ∈ G1. As Y ⊗Z is generated by such rectangles, we must have G1 = Y ⊗Z .

2. Define

G2
def
= {E ∈ Y ⊗ Z : N(y, Ey) ∈ B+(Y)}.

Observe that G2 is a monotone class and contains the algebra of finite disjoint unions

of measurable rectangles. G2 = Y ⊗ Z by the monotone class theorem.

3. Note that ∫
Z
1E(y, z)N(y, dz) =

∫
Z
1Ey(z)N(y, dz) = N(y, Ey).

Therefore if fn is non-negative simple functions, then
∫
Z fn(y, z)N(y, dz) is measur-

able. The result then follows by the monotone convergence theorem.
3In [Douc et al., 2018], the author write (5) without checking the measurablity. We add Lemma 2.1.14 to make it

rigorous. This step is also the key step when proving the classic Fubini’s Theorem.
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Theorem 2.1.15 (Tensor product). Let (X,X ), (Y,Y ) and (Z,Z ) be three measurable

spaces and letM,N be two Markov kernels onX ×Y and Y×Z respectively. Then there

exists a Markov kernel onX × (Y ⊗Z ), called the tensor product ofM andN , denoted by

M ⊗N , such that for all f ∈ Bb(Y × Z,Y ⊗ Z ) its corresponding operator satisfies

M ⊗Nf(x) =

∫
Y
M(x, dy)

∫
Z
f(y, z)N(y, dz). (5)

Furthermore, if (U,U ) is a measurable space and P is a kernel on Z×U , then (M ⊗N)⊗

P =M ⊗ (N ⊗ P ), i.e. the tensor product of kernels is associative.

Proof. As Lemma 2.1.14 shows the integrand is measurable, we can define the mapping

I : Bb(Y× Z) → Bb(X) by

I(f) =

∫
Y
M(x, dy)

∫
Z
f(y, z)N(y, dz).

The mapping is additive and homogeneous. The monotone convergence property also holds.

The Markov kernelM ⊗N thus exists. Since we can explicitly write down the definition of

tensor product, the associativity is also nature.

Notation 2.1.16. For n ≥ 1, the n-th tensor power P⊗n of a kernel P onX×X is the kernel

on X× X ⊗n defined by P ⊗ · · · ⊗ P , i.e.

P⊗nf(x) =

∫
Xn

f(x1, . . . , xn)P (x, dx1)P (x1, dx2) · · ·P (xn−1, dxn). (6)

Remark 2.1.17. Different from compositions of kernels, tensor productsM ⊗ N stored all

the probabilistic information of the transport firstN thenM . For example,M⊗N(x,A×B)

for A ∈ Y , B ∈ Z means the probability of x goes to A first with N then goes from A to

B withM .
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2.1.4 *Degression on Tonelli-Fubini Theorem

Let us leave the mainstream of the thesis for a while to introduce the classic Tonelli-

Fubini Theorem (a well known result in measure theory) as a corollary (or some kind of

remark) of Theorem 2.1.15. This may lead to a better understanding of tensor product.

Corollary 2.1.18 (Tonelli-Fubini). Let ν be a probability measure on (Y,Y ) and N be a

Markov kernel on Y × Z . Then there exists a probability measure on Y ⊗ Z , denoted

ν ⊗N , such that

(i) for all f ∈ Bb(Y × Z,Y ⊗ Z ),

ν ⊗Nf =

∫
Y
ν(dy)

∫
Z
f(y, z)N(y, dz).

(ii) for all Borel measurable function f such that ν ⊗ Nf exists (resp. is finite), then∫
Z f(y, z)N(y, dz) exists (resp. is finite) for ν-almost every y, and defines a Borel

measurable function of y if it is taken as 0 or as any Borel measurable function of y

on the exceptional set. Also

ν ⊗Nf =

∫
Y
ν(dy)

∫
Z
f(y, z)N(y, dz).

Proof. For statement (i), just takeM = ν in Theorem 2.1.15 in the sense of viewing measure

as kernel (Remark 2.1.3). For (ii), suppose ν ⊗Nf− <∞. By statement (i),

∫
Y
ν(dy)

∫
Z
f−(y, z)N(y, dz) = ν ⊗Nf− <∞

so that
∫
Z f

−(y, z)N(y, dz) is ν-integrable hence ν-a.e. finite. Therefore

∫
Z
f(y, z)N(y, dz) =

∫
Z
f+(y, z)N(y, dz)−

∫
Z
f−(y, z)N(y, dz)

for ν-almost every y. The remaining part of proof is just discussing different cases for the

existence (or finiteness) of ν ⊗Nf .

11



Corollary 2.1.19 (Classic Fubini). Let ν1, ν2 be two probability measures on (Y,Y ) and

(Z,Z ). Then there exists a probability measure on Y ⊗ Z , denoted ν1 ⊗ ν2, such that: if

f is a Borel measurable function on (Y × Z,Y ⊗ Z ) such that ν1 ⊗ ν2f exists, then

ν1 ⊗ ν2f =

∫
Y
ν1(dy)

∫
Z

f(y, z)ν2(dz) =
∫
Z
ν2(dz)

∫
Y
f(y, z)ν1(dy).

Proof. Apply Tonelli-Fubini’s Theorem (Corollary 2.1.18) with N = ν2. Then change the

position of ν1 and ν2 to obtain the symmetric equality.

2.2 Stochastic Process

The aim of this section is to help understand stochastic process. Traditionally, a stochas-

tic process on a probability space (Ω,F , P) is a family of random variables {Xt, t ∈ T},

where T is the index set equals to N or R+. However, it can also be understood as a RT-

valued random object. From the view of the latter, the well-known understanding of natrual

filtration as information would be mathematically reasonable.

2.2.1 Random Object

Definition 2.2.1 (random object). A random object X on a probability space (Ω,F , P) is a

measurable function from Ω to (X,X ).

If (X,X ) = (Rn,B),X is said to an random vector or Rn-valued random variable or

simply random variable if n = 1.

Definition 2.2.2 (induced measure). IfX is a random object from (Ω,F , P) → (X,X ), the

probability measure induced by X is the probability measure PX on (X,X ) given by

PX(B)
def
= P{X ∈ B}4

for B ∈ X .

One can write down the definition to check PX is indeed an probability measure.

The induced probability measure PX is also called the law of X .
4There is a convention in probability theory that we will often omit theω; that is, writing {ω : X(ω) ∈ B} as {X ∈ B}.
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Remark 2.2.3. (i) The probability measure PX completely characterized the random ob-

ject X in the sense that it provide the probabilities of all events involving X .

(ii) Very often, when we want to investigate a random object with its law PX given, there

is no reference to the underlying probability space (Ω,F , P), and actually the nature

of the underlying space is not important as long as we can define such random object

on the space[3], i.e. {X ∈ B} ∈ F for all B ∈ X . In fact, we can always supply the

probability space in a canonical way; take Ω = X,F = X , P = PX and define X to

be the identity map; that is, X(ω) = ω for all ω ∈ Ω.

(iii) When we say “letX be a random object on a probability space (Ω,F , P)”, it actually

implicitly assumes that the space should be chosen in an appropriate way such thatX

could be defined 5 .

2.2.2 Induced Sigma-Algebra and Doob-Dykin Lemma

Definition 2.2.4 (induced σ-algebra). Let X : (Ω,F ) → (X,X ) be a random object. The

σ-algebra induced by X is given by

σ(X)
def
= X−1(X ).

One can write down the definition to check σ(X) is indeed an σ-algebra.

Element in σ(X) is of the form {X ∈ A} for some A ∈ X .

The induced σ-algebra σ(X) is also the smallest σ-algebra makingX measurable (The-

orem 5.4.2, [Ash, 2000]). The lemma below named after L. Doob and Dynkin is another key

characterization.

Lemma 2.2.5 (Doob-Dynkin). Let X be an random object from (Ω,F ) → (X,X ). If Z :

(Ω, σ(X)) → (R,B) is a random variable, thenZ = f ◦X for some f : (X,X ) → (R,B).
5In fact, this kind of abbreviation is commonly used. For example, when we say “let x ∈ A”, we actually implicitly

assumes that A is a non-empty set.
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Conversely, if Z = f ◦ X and f : (X,X ) → (R,B), then Z : (Ω, σ(X)) → (R,B) is a

random variable.

In other words, a real-valued function Z is σ(X)-measurable iff it can be written as

some function of X .

We include its proof here since it is the cornerstone to understand σ(X).

Proof. The converse is trivial as compositions of measurable functions is measurable. Now

assume Z : (Ω, σ(X)) → (R,B(R)). Consider first the case Z is an indicator function,

then a simple function and finally the general case. Here we only consider the indicator

function Z = 1C as the remaining procedure is standard. Since Z is σ(X)-measurable,

C ∈ σ(X) = {X−1(A) : A ∈ X }, so that C = X−1(A) for some A ∈ X . Let f = 1A,

then f ◦X = 1A ◦X = 1X−1(A) = 1C = Z.

Remark 2.2.6 (The information of X). Intuitively, the information generated by X is all the

things which can be completely determined by X; in other words, if Y is the information

generated byX andX happens, then we should know Y happens or not. This is exactly the

mathematical formulation Y = f(X). Therefore, σ(X) is said to contain all the information

of X or simply said to be the information of X .

2.2.3 Applications to Stochastic Process

As said in the begining of the subsection, a stochastic process can be viewed as a RT-

valued random object. To illustrate this, we should first defineRT and then define a σ-algebra

on it.

Let T be an infinite index set.

Definition 2.2.7. Let RT denote the space of all real-valued functions ω on the interval T.

Let R be the σ-algebra generated by cylinders, i.e. sets of the form

{ω ∈ RT : (ω(t1), . . . , ω(tn)) ∈ A},
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where 0 ≤ t1 < t2 < · · · < tn, ti ∈ T for all i = 1, . . . , n and A ∈ B(Rn).

A stochastic process X = {Xt, t ∈ T} is a random object from (Ω,F ) to (RT,R). It

is easy to see that X is R-measurable iff Xt is B(R)-measurable for all t ∈ T.

Definition 2.2.8 (filtration). A filtration is an increasing sequence of σ-algebra indexed by

T, {Ft, t ∈ T}, i.e. Ft ⊆ Ft′ if t ≤ t′.

The natural filtration of a stochastic process X = {Xt, t ∈ T} is the filtration consists

of the induced σ-algebras {σ({Xs, s ≤ t, s ∈ T}), t ∈ T}. Here {Xs, s ≤ t, s ∈ T} is a

truncation process of X .

Therefore, by Remark 2.2.6, the natural filtration ofX = {Xt, t ∈ T} could be viewed

as a sequence of information generated by the truncation process{Xs, s ≤ t, s ∈ T}. For the

same reason, a filtration is also called an information flow.

2.3 Brownian Motion

A botanist named R. Brown observed the erratic motion of grains of pollon suspended

in a liquid. A. Einstein gave a mathematical formulation of the motion which can be sum-

marized as the following.

Definition 2.3.1 (Brownian motion). A real-valued Brownian motion (or namedWiener pro-

cess) is a real-valued stochastic process with time index T = R+, W = {Wt, t ∈ R+},

satisfying the following properties.

(i) W0 = x0 a.s.;

(ii) (independent increment) Wt1 −Wt0 , Wt2 −Wt1 , · · · , Wtn −Wtn−1 are independent

for all n ≥ 2 and 0 ≤ t0 < · · · < tn;

(iii) (stationary Gaussian law) Wt −Ws follows N(µ(t − s), σ2(t − s)) for some µ ∈ R

and σ > 0 for all 0 ≤ s < t; and finally

(iv) W has continuous sample paths, i.e. t 7→ Wt is a continuous function on R+ a.s.

If x0 = 0, µ = 0 and σ = 1, thenW is called a standard Brownian motion.
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Since R. Brown had “observed” such kind of process in the real world, such motion

should also exist in the world of mathematics; that is, there is indeed a stochastic process

satisfies Definition 2.3.1. In fact, there are at leat three ways to show its existence:

1. Wiener’s method ([Wiener, 1923]): first defines a pre-measure on the algebra of cylin-

ders. Then use Carathéodory Extension Theorem to extend the measure on the σ-

algebra generated by cylinders. Finally show that the continuous functions with such

a measure is indeed a Brownian motion.

2. A method based on Kolmogorov extension theorem and continuity theorem. This

method would be explained in detail later.

3. Lévy’s interpolation method ([Lévy, 1939]): define a sequence of stochastic processes

iteratively and prove the limit of the process is indeed a Browian motion.

2.3.1 Kolmogorov Extension Theorem

The content of Kolmogorov extension theorem is the vadality to extend a class of mea-

sures on a finite dimensional spaces to a measure on an infinite dimensional space, provided

that the class is consistency.

Definition 2.3.2 (consistency condition). A family of probability measures µt1,t2,...,tn on Rn

is said to satisfy the consistency condition if for all 0 ≤ t1 < t2 < · · · < tn, A1 ∈ B(Ri−1),

A2 ∈ B(Rn−i) with i = 1, . . . , n,

µt1,...,ti−1,t̂i,ti+1,...,tn
(A1 × A2) = µt1,...,tn(A1 × R× A2), (7)

where t̂i means that ti is delated.

This condition ensures different measures in the family to have the same value for dif-

ferent representations of the same set.

Theorem 2.3.3 (Kolmogorov’s Extension Theorem). Suppose with each 0 ≤ t1 < t2 <

· · · < tn, n ≥ 1, there is a probability measure µt1,...,tn on Rn. Assume the family satisfies
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the consistency condition. Then there exists a unique probability measure P on the space

(R[0,∞),R) such that

P{ω ∈ R[0,∞) : (ω(t1), . . . , ω(tn)) ∈ A} = µt1,...,tn(A)

for all 0 ≤ t1 < t2 < · · · < tn, n ≥ 1 and A ∈ B(Rn).

For a proof, see (Theorem 2.7.5, [Ash, 2000]).

Remark 2.3.4 (Existence of Brownian Motion). For each 0 ≤ t1 < t2 < · · · < tn, n ≥ 1,

define a Markov kernel for each i = 1, . . . , n by a normal density,

Pti−ti−1
(x,A)

def
=

∫
A

g(y, ti − ti−1 | x)dy, (8)

where

g(y, t|x) = 1√
2πtσ

exp
[
−(y − x− µt)2

2tσ2

]
.

Then there is a probability measure

δx ⊗ Pt1−t0 ⊗ · · · ⊗ Ptn−tn−1

on Rn, which satisfies the consistency condition. Therefore, by Kolmogorov’s extension

theorem, there exists a unique probabilitymeasure P as an extension. Then the finite marginal

distribution of (ω(t0), ω(t1), . . . , ω(tn)) could be calculated. Use the standard transformation

method, one can find the distribution law of (ω(t0), ω(t1)−ω(t0), . . . , ω(tn)−ω(tn−1)). Then

condition (i), (ii) and (iii) in Definition 2.3.1 are be checked.

Remark 2.3.5. In fact, the above procedure, which defines Brownian motion by a Markov

semigroup, can be widely generalized to any Markov stochastic process. The (stochastic)

continuity of the defined process can be inherited from such continuity of the Markov semi-

group. For more details, see (Section 2.2, [Da Prato et al., 1996]).

It suffices to check condition (iv). However, the procedure is rather complicated. The

tool we shall use is the Kolmogorov’s continuity theorem.
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2.3.2 Kolmogorov’s Continuity Theorem

Definition 2.3.6. A stochastic process X̃t is called a version (or named modification) of Xt

if P{X̃t = Xt} = 1 for each t ∈ T.

Theorem 2.3.7 (Kolmogorov’s Continuity Theorem). Let {Xt, 0 ≤ t ≤ 1} be a stochastic

process. Assume that there exists constant α, β satisfying the inequality

E |Xt −Xs|α ≤ K |t− s|1+β

for all 0 ≤ t, s ≤ 1. Then Xt has a continuous version 6.

For a proof, see (Theorem 3.3.8, [Kuo, 2006]) or (Appendix, [Evans, 2013]).

Therefore, if we take x0 = 0, µ = 0 and σ = 1 in Remark 2.3.4. Then it would satisfies

E |ω(t)− ω(s)|4 = 3 |t− s|2

since ω(t)−ω(s) is normally distributed wiht mean 0 and variance t− s. By Kolmogorov’s

continuity theorem, it must possess a continuous version. Replaceω by its continuous version

ω̂ if necessary, then it becomes a Brownian motion.

So far, we have illustrated the existence of Brownian motion.

2.4 Conditional Expectation

The concept of conditional expectation is the highlight of advanced probability theory.

It is an essential tool for the definition ofmartingale in §2.5. For this reason, many textbooks

only illustrate conditional expectation given a σ-algebra. However, for many problems we

concern in the thesis, a rigorous definition for P{A | X = x} is needed. The material of this

subsection comes from (Chapter 5, [Ash, 2000]).

2.4.1 Classic Conditional Expectation

Commonly, there are two different ways to establish the concpet of conditional expec-

tation:
6More actually, the sample path of the continuous version is γ-Hölder continuous, where γ ∈ (0, α/β).
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1. via Radon-Nikodym theorem (Theorem 2.2.1, [Ash, 2000]); or

2. viewing as an image after projection in the Hilbert space L2(Ω) and then generalizing

the idea.

Here we follow the first way, which is less intuitive but much quicker.

Theorem 2.4.1 (Classic Conditional Expectation). Let Y be an extended random variable

on (Ω,F , P), G a sub-σ-algebra of F . Assume that E(Y ) exists. Then there is a function

(random variable) h: (Ω,G ) → (R,B(R)) such that

∫
C

Y d P =

∫
C

hd P

for all C ∈ G . Furthermore, if h′ is another such function, then h = h′, P-a.s.

We define E(Y | G ), called the conditional expectation of Y given G , as h.

Proof. Let λ(C) =
∫
C
Y d P. Check that it is a signed measure and absolutely continuous

w.r.t. P. Then the result follows from the Radon-Nikodym theorem.

2.4.2 Conditional Expectation Given a Set

Theorem2.4.2 (Conditional Expectation). LetY be an extended random variable on (Ω,F , P),

and X : (Ω,F ) → (Ω′,F ′), a random object. If E(Y ) exists, there is a function g :

(Ω′,F ′) → (R,B(R)) such that for each A ∈ F ′,

∫
{X∈A}

Y d P =

∫
A

g(x)d PX(x). (9)

Furthermore, if h is another such function, then g = h PX-a.s.

We define E(Y | X = x) as g(x).

Proof. Let λ(A) =
∫
{X∈A} Y d P . Check that λ is a signed measure and absolutely continu-

ous w.r.t. PX . Then the result follows from the Radon-Nikodym theorem.

Conditional expectation includes conditional probability as a special case.
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Definition 2.4.3 (conditional probability). Let A ∈ F and X : (Ω,F ) → (Ω′,F ′), a

random object. Then we define P(A | X = x) by E(1A | X = x).

The next remark gives another characterization of the conditional expectation given a

set.

Remark 2.4.4. Suppose we have g(x) = E(Y | X = x). If we define h(ω) = g(X(ω)), then

h = E(Y | σ(X)) since

∫
{X∈A}

Y d P =

∫
A

g(x)d PX(x) =

∫
{X∈A}

h(ω)d P(ω) (10)

by changing of variable. In this case, we shall usually write h = E(Y | X) for convenience.

We can understand E(Y | X) by either g(X) or E(Y | σ(X)) 7 .

The above remark tells us if we have the definition E(Y | X = x), then we can use it to

define E(Y | X). And they essentially means the same thing. The next remark tells us the

converse is also correct.

Remark 2.4.5. In fact, we can also define E(Y | X = x) using E(Y | σ(X)) with the help of

Doob-Dykin lemma. Since E(Y | σ(X)) is σ(X)-measurable, it can be written as a function

of X , say g(X). Then g(x) should be the same as E(Y | X = x) by (10).

A final remark is given, which ends the discussion of relationship between E(Y | X)

and E(Y | X = x).

Remark 2.4.6. Any conditional expectation given a σ-algebra arises from a random object

X in this way by taking X to be the identity map from (Ω,F ) → (Ω,G ). Then σ(X) =

X−1(G ) = G so that E(Y | G ) = E(Y | σ(X)) = E(Y | X).

Another question is that: does the definition of conditional expectation (and conditional

probability) given a set agrees with our intuition in simple cases?
7The former understanding is accepted in most elementary course of probability theory, while the latter is commonly

accepted in advanced courses of probability.
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Example 2.4.7. (i) if X takes discrete value, we should have

P(A | X = xi) =
P(A ∩ {X = xi})

P{X = xi}
;

(ii) if X is a continuous random variable with a density function, we should have 8

P(Y ∈ C | X = x) = lim
h→0

P({Y ∈ C} ∩ {x− h ≤ X < x+ h})
P{x− h ≤ X < x+ h}

=

∫
C

f(x, y)

fX(x)
dy.

The answers to the above two simple cases are of course “yes”es. The proof can be

done by pluging in the r.h.s. of each above equality to (9) and then by the uniqueness of

conditional expectation.

Next example illustrates the reason why we may think the Markov kernel N(x,B) as

the probability of x goes to A: N(x,B) = µ⊗N(B | X = x).

Example 2.4.8. Let (X,X ) and (Y,Y ) be given and N is a Markov kernel on (X,Y ), µ is

a probability measure on (X,X ). LetX be the identity map on X so that PX = µ. Then for

A ∈ X , B ∈ Y , by the definition of tensor product,

µ⊗N({X ∈ A} × B) =

∫
X
dµ(x)

∫
Y
1A×B(x, y)N(x, dy)

=

∫
A

dµ(x)N(x,B).

Therefore N(x,B) = µ⊗N(B | X = x) by the definition conditional expectation.

2.5 Martingales

The importance of martingales and related topics can hardly be exaggerated[10]. How-

ever, in the thesis we only use it as an auxiliary tool. Thus the treatments in this subsection

would be brief.

2.5.1 Discrete-Time Martingales

Definition 2.5.1 (martingale). Let {Xk, k ∈ N} be a sequence of integrable random variables

on (Ω,F , P) and {Fk, k ∈ N} be a filtration;Xk is assumedFk-measurable for each k ∈ N
8In fact, the so-called conditional density in elementary courses of probability hY |X(x | y) is defined as f(x,y)

fX (x)
.
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(this is called adapted). Then sequence {Xk, k ∈ N} is said to be a martingale relative to

Fn (alternatively, we say {Xn,Fn} is a martingale) iff for all n ∈ N,

E(Xn+1 | Fn) = Xn;
9

a submartingale (resp. supermartingale) iff E(Xn+1 | Fn) ≥ Xn (resp. E(Xn+1 | Fn) ≤

Xn).

Definition 2.5.2 (stopping time). A stopping time for a filtration {Ft, t ∈ T} is a random

variable T such that {T ≤ t} ∈ Ft for each t ∈ T.

Martingale convergence theorem, optimal sampling theorem and other related results

can be found in (Sections 6.3-6.7, [Ash, 2000]); Doob’s martingale inequalities can be found

in (Chapter 26, [Jacod et al., 2003]).

2.5.2 Continuous-Time Martingales

Definition 2.5.3. A stochastic process {Xt, t ≥ 0} is a (continuous-time) martingale w.r.t.

a filtration {Ft, t ≥ 0} iff it is adapted to the filtration, integrable and satisfies

E[Xt | F ] = Xs

when 0 ≤ s < t.

The notions of sub- and supermartingale can be similarly generalized.

The fact that most results in discrete-time martingale theory are also true in continuous-

time is based on Doob’s regularization theorem (Theorem 9.28, [Kallenberg, 2021]), which

states that any martingale w.r.t. a right-continuous and complete filtration admits a right-

continuous, left-hand limits (abbreviated as rcll or càdlàg) version. For the corresponding

theorems we may need, see [Karatzas et al., 1991].

Lastly we need the concept of local martingale to describe the martingale-like process

but without integrability.
9In statements involving conditional expectations, the “a.s.” is always understood and will usually be omitted.
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Definition 2.5.4 (local martingale). A stochastic process {Xk, k ∈ N} is a local martingale

if there exists a nondecreasing sequence of stopping time {Tk, k ∈ N} such that limk Tk = ∞

and each Xt∧Tk
is a martingale.

2.6 Itô Integral

Itô Integral has been well-studied in many textbooks, for example [Kuo, 2006], [Evans,

2013] and [Øksendal, 2003]. Therefore we will only provide a brief description.

2.6.1 Construction of Itô Integral

Fix a Brownian motion {Wt, t ≥ 0} and let a filtration {Ft, t ≥ 0} be the natrual

filtration ofWt.

Notation 2.6.1. We will use M 2(a, b) to denote the space of all stochastic process

f(t, ω) : [a, b]× Ω → R,

where a ≤ t ≤ b, ω ∈ Ω, satisfying the following:

(i) (t, ω) 7→ f(t, ω) isB×F -measurable, whereB denotes the Borel σ-algebra on [a, b];

(ii) f(t, ω) is adapted to the filtration {Ft}.

(iii) E[
∫ b

a
f(t, ω)2dt] <∞.

We need condition (i) to ensure that
∫ b

a
f(t, ω)2dt is F -measurable by Fubini’s theorem so

that condition (iii) makes sense. Suppse X ∈ M 2(a, b), if ‖X‖ def
= {E[

∫ b

a
X(t, ω)2dt]}1/2,

then one can check the space is a Banach space.

The steps for the construction of Itô integral are:

1. Define the value of integral I(σ) for elementary process σ ∈ M 2(0, T ) as Riemann

sum.

2. Observe the Itô isometry: E(|I(σ)|2) = E
∫ T

0
|σ(t)|2dt. The l.h.s. is the L2(Ω)-norm

of I(σ) on L2(Ω) and the r.h.s. can be regarded as the L2((0, T ) × Ω)-norm of σ on

M 2(0, T ).
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3. Prove that the elementary process is dense in M 2(0, T ) with L2((0, T )× Ω)-norm.

4. Prove that limn I(σn) converges in L2(Ω)-norm and define I(f) by limn I(σn), where

σn approximates f on M 2(0, T ).

For more details, see [Itô, 1944], which is the original paper, or the textbooks listed in the

begining of this subsection.

Now consider I(t) def
=

∫ t

0
f(r)dW (r) as a stochastic process with a little abuse of nota-

tion. The following theorem might be one of the most important non-trivial properties.

Theorem 2.6.2. Suppose f ∈ M 2(0, T ). Then the stochastic process I(t) is a centered,

squared integrable, continuous martingale.

For a proof, see (Theorem 4.3.5, 4.6.1, 4.6.2, [Kuo, 2006]).

Previously,
∫ t

s
f(r)dW (r) makes sense only when f(s) = f(s, ω) ∈ M 2(s, t). Now

we extend the class of stochastic processes.

Notation 2.6.3. Denote L 2(a, b) (resp. L 1(a, b)) the space of all stochastic processes

f(t, ω) : [a, b]× Ω → R

where a ≤ t ≤ b, ω ∈ Ω, satisfying the following:

(i) (t, ω) 7→ f(t, ω) isB×F -measurable, whereB denotes the Borel σ-algebra on [a, b];

(ii) f(t, ω) is non-anticipating w.r.t. F;

(iii)
∫ b

a
f(t, ω)2dt <∞ (resp.

∫ b

a
|f(t, ω)| dt <∞) a.s.

The difference between L 2(a, b) and M 2(a, b) is in condition (iii). For f ∈ M 2(a, b), we

require E[
∫ b

a
f(t, ω)2dt] <∞ thus

∫ b

a
f(t, ω)2dt <∞ a.s.; that is, M 2(a, b) ⊆ L 2(a, b).

Remark 2.6.4. One can still define Itô integral for f ∈ L (a, b). However, we will lose

1. Itô isometry (but Burkholder-Davis-Gundy inequality is valid, see (Chapter 1, Theo-

rem 7.3, [Mao, 2008])); and
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2. the convergence in L2(Ω) of I(σn) to I(f). Instead, we only have the convergence in

probability.

3. I(t) as a stochastic process would no longer be a martingale (because of the lack of

integrability) but a local martingale.

4. I(t) is not continuous, but it processes a continuous version (or stronger, a continuous

realization).

2.6.2 Itô’s Formula

Due to the fact of Brownian motion’s non-zero quadratic variation, there will be an

additional term for the chain rule of Itô integral[14].

Definition 2.6.5 (Itô process). An Itô process is a stochastic process of the form

Xt = Xa +

∫ t

a

fsdWs +

∫ t

a

gsds (11)

where a ≤ t ≤ b, Xa is Fa-measurable, f ∈ L 2(a, b) and g ∈ L 1(a, b).

It is convenient (and widely accepted) to write (11) by its symbolic shorthand

dXt = ftdWt + gtdt. (12)

Theorem 2.6.6 (Itô’s Formula). Let Xt be an Itô process given by (12). Suppose F (t, x) is

a continuous function with continuous partial derivatives ∂F
∂t
, ∂F
∂x

and ∂2F
∂x2 .

Then F (t,Xt) is also an Itô process and

dF (t,Xt) =
∂F

∂t
(t,Xt)dt+

∂F

∂x
(t,Xt)dXt +

1

2

∂2F

∂x2
(t,Xt)dXt · dXt,

and we can calculate the symbols by dt · dt = 0, dt · dWt = 0 and dWt · dWt = dt; in other
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words, by substituting (12) into the symbolic shorthand,

F (t,Xt) =F (a,Xa) +

∫ t

a

∂F

∂x
(s,Xs)fsdWs

+

∫ t

a

[
∂F

∂t
(s,Xs) +

∂F

∂t
(s,Xs)gs +

1

2

∂2F

∂x2
(s,Xs)f

2
s

]
ds.

See (Theorem 18.18, [Kallenberg, 2021]) for a complete proof in a much more general

case, which in fact includes the multidimensional case that we shall introduce proceedingly;

and (Theorem 4.1.2, [Øksendal, 2003]) for a sketch of proof, which is enough to understand

the idea of it.

The situations in multidimensions are similar. LetW (t) = (W1(t), . . . ,Wm(t)) denote

m-dimensional Brownian motion. If fi(t) ∈ L 1(a, b) and gij(t) ∈ L 2(a, b) for each i, j,

then we can form the following n Itô process
dX1 = f1dt+ g11dW1 + · · ·+ g1mdWm
... ... ...
dXn = fndt+ gn1dW1 + · · ·+ gnmdWm

(13)

Or, in matrix notation,

dX(t) = fdt+ gdW (t), (14)

where

dX(t) =

dX1(t)
...

dXn(t)

 , f =

f1...
fn

 , g =

g11 · · · g1m
... ...
gn1 · · · gnm

 , dW (t) =

dW1(t)
...

dWm(t)

 .
We can extend the Itô’s formula to multidimensional case.

Theorem 2.6.7 (Multidimensional Itô’s Formula). Suppose F (t, x1, . . . , xn) is a continuous

function on [a, b] and has continuous first-order and second-order partial derivatives ∂F
∂t
, ∂F
∂xi

and ∂2F
∂xi∂xj

for i, j = 1, . . . , n.

Then

dF (t,X(t)) =
∂F

∂t
dt+

n∑
i=1

∂F

∂xi
dXi(t) +

1

2

n∑
i,j=1

∂2F

∂xi∂xj
dXi(t) · dXj(t), (15)
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where dt · dt = 0, dBi(t) · dt = dt · dBi(t) = 0 and dBi(t) · dBj(t) = δijdt; or in matrix

notation,

dF (t,X(t)) =
∂F

∂t
dt+ (∇XF )

⊤dX(t) +
1

2
(dX(t))⊤(HXf)dXt

=

{
∂F

∂t
+ ((∇XF )

⊤)f +
1

2
Tr[g⊤(HXF )g]

}
dt+ (∇XF )

⊤gdW (t),

where ∇XF is the gradient of F w.r.t. X and HXF is the Hessian matrix of F w.r.t. X and

Tr is the trace operator.
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3. General Thoery for Finding Ergodic Measures
The aim of this section is to provide some general tools for finding ergodic measures.

Most of the preparatory results of showing ergodicity are provided with complete proofs.

In §3.1, we breifly introduce the meaning and equivalent characterizations of ergodicity.

In §3.2, we investigate in details on the structure of the set of invariant measures. One of the

key results is that the unique existence of invariant measure implies ergodicity. Therefore,

we shall focus on those Markov semigroups which process exactly one invariant measure.

§3.3 provides some sufficient conditions for the Markov semigroups that process invariant

measures and §3.4 for which of processing a unique invariant measure.

3.1 Ergodicity

Ergodic measure is a special member in the family of invariant measures. In this sub-

section, we shall give definitions for both of them.

3.1.1 Invariant Measure of Markov Semigroup

Assume that H be a Hilbert space and T = R+ or N.

Definition 3.1.1. Let (H,X ) be a measurable space. A probability measure µ on it is said

to be invariant w.r.t. a semigroup Pt ∈ L(Bb(H)), t ∈ T iff

∫
H

Ptφdµ =

∫
H

φdµ (16)

for all t ∈ T and φ ∈ Bb(H).

Remark 3.1.2. It is clear that the above definition is equivalent of saying

µPt(A) = µ(A) (17)

for all t ∈ T by the classic method; or

P ∗
t µ = µ (18)
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for all t ∈ T by Remark 2.1.13.

3.1.2 Ergodic Theorems

A basic fact for invariant measure w.r.t. a semigroup Pt is that we can extend Pt from

an element in L(Bb(H)) to a strongly continuous (for each φ ∈ L2(H,µ), limt→0 Ptφ = φ)

semigroup of L(L2(H,µ)) (p. 381, Theorem 1, [Yosida, 1995]). Then Pt could be view as

a linear operator on a Hilbert space, so that we can use the following result in the operator

theory on Hilbert space.

Theorem 3.1.3. Let E be a Hilbert space and T be a bounded linear operator on E. Let

Mn
def
=

1

n

n−1∑
k=0

T k

on E. Assume that supn∈N ‖T n‖ < ∞. Then limnMn(x) exists for all x ∈ E, denoted the

limiting value byM∞(x). Moreover,M∞ ∈ L(E),M2
∞ =M∞ andM∞(E) = ker(I − T ).

For a proof, see (Theorem 5.11, [Da Prato, 2006]).

Then apply the result to the average

M(T )φ
def
=

1

T

∫ T

0

Ptφdt

for all φ ∈ L2(H,µ) and T > 0. We obtain the well-knwon Von Neumann’s ergodic theorem

(Theorem 5.12, [Da Prato, 2006]).

Theorem 3.1.4 (Von Neumann). limT→∞M(T )φ exists in L2(H,µ), denoted by M∞φ.

Moreover, it is a projection operator on Σ and also

∫
H

M∞φdµ =

∫
H

φdµ.

3.1.3 Characterizations of Ergodic Measures

Thanks to Von Neumann’s Theorem, the following definition makes sense.
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Definition 3.1.5 (ergodic, strongly mixing). Let µ be an invariant measure for Pt. We say

that

• µ is ergodic iff

lim
T→∞

1

T

∫ T

0

Ptφdt = φ̄

in L2(H,µ)-sense for all φ ∈ L2(H,µ),

• µ is strongly mixing iff

lim
T→∞

Ptφ = φ̄

in L2(H,µ)-sense for all φ ∈ L2(H,µ),

where φ̄ = µ(φ) (the expected value of φ).

Remark 3.1.6. (i) Ergodicity is often interpreted by saying that the “time average” con-

verges to the “space” average as T goes to infinity. If µ is strongly mixing, then it is

erogdic by L’ Hospital’s theorem.

(ii) The main problems we focused in this thesis would be the existence and uniqueness

of invariant measure for a given system. Therefore we define ergodicity for measures.

However, for the problems that considering a fixed measure space and discuss the

systems, one may say the ergodicity for semigroups or operators.

Ergodicity can also be characterized as the following. In fact, this is a standard result

in ergodic theory. The discussion can be found in (Subsection 12.4.3, [Da Prato, 2014]).

Let Σ of be the sets of stationary points

Σ
def
= {φ ∈ L2(H,µ) : Ptφ = φ} (19)

Definition 3.1.7. Let µ be an invariant measure of Pt. A measurable set A is said to be

invariant for Pt iff its characteristic function 1A belongs the stationary points Σ. If µ(A)

equals 0 or 1, we say it is trivial.
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Theorem 3.1.8. Let µ be an invariant measure for Pt. Then following statements are equiv-

alent:

(i) µ is erogdic.

(ii) The dimension of the linear space Σ of stationary points in (19) is 1.

(iii) Any invariant set is trivial.

3.2 Structure of the Set of Invariant Measures

Let

Λ
def
= {µ ∈ Bb(H)∗ : P ∗

t µ = µ}. (20)

Then it is clear a convex susbet of Bb(H)∗.

Theorem 3.2.1. Assume that there is a unique invarinat measure µ for Pt. Then µ is ergodic.

Proof. Assume by contradiction that µ is not ergodic. Then µ process a nontrivial invariant

set Γ, i.e. Pt1Γ = 1Γ. Let

µΓ(A) =
1

µ(Γ)
µ(A ∩ Γ) (21)

for allA ∈ B(H). It is a probability measure and we are going to show it is another invariant

measure, i.e.,

µΓ(A) =

∫
H

Pt(x,A)µΓ(dx);

or equivalent (by classic method)

µ(A ∩ Γ) =

∫
Γ

Pt(x,A)µ(dx).
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Since Γ is an invariant set,∫
Γ

Pt(x,A)µ(dx) =
∫
Γ

Pt(x,A ∩ Γ)µ(dx) +
∫
Γ

Pt(x,A ∩ Γc)µ(dx)

=

∫
Γ

Pt(x,A ∩ Γ)µ(dx)

=

∫
Γ

Pt(x,A ∩ Γ)µ(dx) +
∫
Γc

Pt(x,A ∩ Γ)µ(dx)

=

∫
H

Pt(x,A ∩ Γ)µ(dx) = µ(A ∩ Γ),

by the invariance of µ in the last step.

Now we would like to prove the set of extreme points ofΛ is precisely the set of ergodic

measures. We need the following lemma.

Lemma 3.2.2. Let µ, ν ∈ Λwith µ ergodic and ν absolutely continuous w.r.t. µ. Then µ = ν.

Proof. By the definition of ergodicity,

lim
T→∞

1

T

∫ T

0

Pt1Γdt = µ(Γ)

in L2(µ). Therefore there exists a sequence Tn ↑ ∞ such that

lim
n→∞

1

Tn

∫ Tn

0

Pt1Γdt = µ(Γ)

µ-a.s. Since ν � µ, it holds ν-a.s. Then integrate w.r.t. ν, the l.h.s. equals ν(Γ) by the

invariance of ν; the r.h.s. maintains the same since ν is a probability measure. Hence µ(Γ) =

ν(Γ).

Definition 3.2.3 (extreme points). Let C be a convex set. x ∈ C is said to be an extreme

point iff the existence of α ∈ (0, 1) such that x = αy + (1 − α)z for y, z ∈ C implies

x = y = z.

Theorem 3.2.4. The set of all invariant ergodic measures of Pt coincides with the set of all

extreme points of Λ.
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Proof. 1. Assume µ is ergodic. If there exists α ∈ (0, 1) such that µ = αµ1 + (1−α)µ2

then clearly µ1 � µ, µ2 � µ. Hence µ1 = µ2 = µ.

2. Assume µ is a extreme point. Let Γ be an invariant set. Define µΓ as (21). We know

that µΓ is an invariant measure. Then one can easily check the following

µ = µ(Γ)µΓ + (1− µ(Γ))µΓc .

Therefore µ(Γ) must equal to zero or one, which shows the erogdicity.

Theorem 3.2.5. If µ and ν are both erogdic, then µ = ν or µ ⊥ ν (µ and ν are mutually

singular).

Proof. Assume µ 6= ν. Let Γ ∈ B(H) such that µ(Γ) 6= µ(Γ). Then by the definition of

ergodicity, there exists Tn ↑ ∞ andM,N Borel sets such that µ(M) = µ(N) = 1 and

lim
n→∞

1

Tn

∫ Tn

0

Pt1Γ(x)dt = µ(Γ),

for all x ∈M ; and

lim
n→∞

1

Tn

∫ Tn

0

Pt1Γ(x)dt = ν(Γ),

for all x ∈ N . We can take the common sequence Tn by replacing it with subsequence if

necessary. Then we must haveM ∩N = ∅, i.e. µ and ν are mutually singular.

3.3 Existence of Invariant Measure

In this subsection, we shall prove the famous Krylov-Bogoliubov Theorem and its con-

sequences, which are important tools to show the existence of invariant measures.

Definition 3.3.1 (Feller). Let Pt be a Markov semigroup on H . We say Pt is Feller iff

Ptφ ∈ Cb(H) for any φ ∈ Cb(H) and any t ≥ 0.

Lemma 3.3.2. Let µ, ν ∈ M1(H) be such that

∫
H

φ(x)µ(dx) =
∫
H

φ(x)ν(dx)
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for all φ ∈ Cb(H). Then µ = ν.

Proof. Note that φn ∈ Bb(H) defined by

φn(x) =


1, if x ∈ C

1− nd(x,C) if d(x,C) ≤ 1/n

0 if d(x,C) ≥ 1/n

is uniformly bounded by 1 and converges to 1C when C is closed. Then the dominated

convergence theorem implies µ(C) = ν(C). As the collection of closed sets generates the

Borel σ-algebra of H , µ = ν as claimed.

Theorem 3.3.3 (Krylov-Bogoliubov). If Pt is Feller and for some x0, the sequence of mea-

sures

µT (x0, G) =
1

T

∫ T

0

Pt1G(x0)dt =
1

T

∫ T

0

Pt(x0, G)dt

is tight, then there exists an invariant measure µ for Pt on H .

Proof. By the well-known Prokhorov theorem, tightness implies weak compactness. There

exists {µTk
}k∈N weakly converge to µ. That is, for ψ ∈ Cb(H),

lim
k

∫
H

ψdµTk
=

∫
H

ψdµ.

From the definition of µT ,∫
1GdµT = µT (G) =

1

T

∫ T

0

[∫
1G(y)Pt(x0, dy)

]
dt.

Therefore ∫
ψdµT =

1

T

∫ T

0

[∫
ψ(y)Pt(x0, dy)

]
dt

for all ψ ∈ Cb(H). Using this,

lim
k

∫
H

ψdµTk
= lim

k

1

Tk

∫ T

0

[∫
ψ(y)Pt(x0, dy)

]
dt = lim

k

1

Tk

∫ T

0

Ptψ(x0)dt.
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For any φ ∈ Cb(H), choose ψ = Psφ ∈ Cb(H) by Feller property, then∫
H

Psφdµ = lim
k

1

Tk

∫ Tk

0

Pt+sφ(x0)dt

= lim
k

1

Tk

[∫ Tk

0

Ptφ(x0)dt+
∫ Tk+s

Tk

Ptφ(x0)dt−
∫ s

0

Ptφ(x0)dt
]

= lim
k

∫
H

φdµTk
=

∫
φdµ.

By Lemma 3.3.2, µ is an invariant measure for Pt.

3.4 Uniqueness of Invariant Measure

The following definitions is crucial for the existence and uniqueness of the invariant

measure, as we shall see later.

Definition 3.4.1 (strong Feller, irreducible, regular). Let Pt be a Markov semigroup on H .

• Pt is strong Feller iff Ptφ ∈ Cb(H) for any φ ∈ Bb(H) and any t > 0.

• Pt is irreducible iff Pt1B(x0,r)(x) > 0 for all x, x0 ∈ H , r > 0 and any t > 0.

• Pt is regular iff for fixed t > 0, all probability measures {πt(x, ·): x ∈ H} are

mutually equivalent (two measures are equivalent iff µ � ν and ν � µ, i.e. Nµ =

Nν , where Nµ denotes the collection of sets of measure zero by µ.).

Theorem 3.4.2 (Hasminskii). Assume that the Markov semigroup Pt is strong Feller and

irreducible. then it is regular.

Proof. To prove the regularity, it suffice to show that Pt(x,A) > 0 implies Pt(y, A) > 0 for

all x, y ∈ H . Now assume Pt(x,A) > 0. Pick h ∈ (0, t). We have

Pt(x,A) =

∫
H

Ph(x, dz)Pt−h(z, A)

so that Pt−h(z0, A) > 0. By strong Feller, there exists B(z0, r) such that Pt−h(z, A) > 0 for
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all z ∈ B(z0, r). Hence

Pt(y, A) =

∫
H

Ph(y, dz)Pt−h(z, A)

≥
∫
B(z0,r)

Ph(y, dz)Pt−h(z, A) > 0

by irreducibility.

Theorem 3.4.3 (Doob). Assume that the Markov semigroup Pt is regular and processes an

invariant measure µ. Then µ is equivalent to Pt(x, ·) for any t > 0 and x ∈ H . Moreover, µ

is the unique ergodic measure for Pt.

Proof. Note that

µ(A) =

∫
H

Pt(y, A)µ(dy).

Therefore the equivalence of µ and Pt(x, ·) follows immediately by the definition of regu-

larity.

Let Γ be the invariant set, with µ(Γ) > 0, Pt1Γ = 1Γ. Since µ(Γ) > 0, we must have

Pt1Γ(x) = Pt(x,Γ) > 0, for all x ∈ Rn by equivalence. Then we obtain 1Γ(x) > 0 for all

x ∈ Rn so that 1Γ = 1. Hence µ is erogdic.

If there is another invariant erogdic measure ν. Then µ must equivalent to ν so that

µ = ν by Lemma 3.2.2.

Remark 3.4.4. Under the conditions of Doob’s Theorem, the conclusion of µ can be stronger

than ergodicity. In fact, µ is strongly mixing. The proof (Theorem 4.2.1, [Da Prato et al.,

1996]) is not that easy so that we only quote the result.
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4. Ergodicity of Monotone SODEs
We are here concerned with the study of the asymptotic behaviour of the Stochastic

Ordinary Differential Equation (SODE)

{
dX(t) = b(X(t))dt+ σ(X(t))dW (t)

X(s) = η,
(22)

where b : Rd → Rd, σ : Rd → Rd×d andX(t),W (t) ∈ Rd, η ∈ L2(Ω,Fs). Assume b, σ are

both continuous maps.

First let us review some basic notions and inequalities in SODE theory. The outline of

this section would be presented at the end of §4.2, after the problem has been setted up.

4.1 Basic Notions and Inequalities in SODE Theory

Definition 4.1.1. An Rd-valued stochastic process {Xt, s ≤ t ≤ T} is called a solution of

(22) if it has the following properties:

(i) {Xt} is continuous and Ft-adapted.

(ii) b(Xt) ∈ L 1(s, T ) and σ(Xt) ∈ L 2(s, T ).

(iii) The following stochastic integral equation

Xt = x0 +

∫ t

s

b(Xu)du+
∫ t

s

σ(Xu)dWu (23)

holds a.s. for t ∈ [s, T ].

A solution {Xt} is said to be unique if any other solution {X̃t} is indistinguishable from

{Xt}, that is,

P{Xt = X̃t, ∀t ∈ [s, T ]} = 1.

Notation 4.1.2. We shall use X(t, s, x, ω) (or Xs,x
t (ω) when there are to many parentheses)

to denote the solution of SODE (22), where s, xmeans the SODE is initialized at swith value

x and t means at time t. If s = 0, then we simply write X(t, x, ω) (or Xx
t (ω)) instead of
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X(t, 0, x, ω). Sometimes when there is no chance of ambiguity, we would only writeXt(ω).

We often omit to write ω as the convention in probability theory.

The advantage of the notationX(t, s, x, ω) is that, when the initial value possesses ran-

domness, i.e. x = x(ω) is a random variable, then there will be two different contributions

to the randomness ofX(t, s, x(ω), ω). Using our notation, those two kinds of randomnesses

are seperated clearly in mind.

In the following, we shall use η, ζ to denote a random initial value and x, y to denote a

constant.

The following two Gronwall-type inequalities are our main tools when finding bound-

aries. Their proofs can be found in (Section 1.8, [Mao, 2008]).

Lemma 4.1.3 (Gronwall’s Inequality). Let T > 0 and c ≥ 0. Let u(·) be a Borel measurable

bounded non-negative function of [0, T ], and let v(·) be a non-negative integrable function

on [0, T ]. If

u(t) ≤ c+

∫ t

0

v(s)u(s)ds

for all 0 ≤ t ≤ T , then

u(t) ≤ c exp
(∫ t

0

v(s)ds
)

for all 0 ≤ t ≤ T .

Lemma 4.1.4 (Bihari’s Inequality). Let T > 0 and c > 0. LetK : R+ → R+ be a continuous

non-decreasing function such that K(t) > 0 for all t > 0. Let u(·) be a Borel measurable

bounded non-negative function on [0, T ], and let v(·) be a non-negative integrable function

on [0, T ]. If

u(t) ≤ c+

∫ t

0

v(s)K(u(s))ds,

for all 0 ≤ t ≤ T , then

u(t) ≤ G−1

(
G(c) +

∫ t

0

v(s)ds
)
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holds for all such s ≤ t ≤ T that satisfies

G(c) +

∫ t

0

v(s)ds ∈ Dom(G−1),

where

G(r) =

∫ r

1

ds
K(s)

on r > 0, and G−1 is the inverse function of G.

4.2 Problem Setups and Outlines

It is well-known that if both b and σ satisfies the Lipschitz condition, then the SODE

processes a unique solution. To be more generalized, we shall study (22) under the following

hypothesis.

Assumption 4.2.1 (Monotonicity). There exists λ0 ∈ R such that for all x, y ∈ Rd,

2 〈x− y, b(x)− b(y)〉+ ‖σ(x)− σ(y)‖2 ≤ λ |x− y|2 (1 ∨ log |x− y|−1).

Assumption 4.2.2 (Non-degenerate of σ). There exists λ2 ∈ R+ such that

sup
x∈Rd

∥∥σ−1(x)
∥∥ ≤ λ2.

We need the above assumption to prove the uniqueness of invariant measure and the

assumption below to prove the existence of invariant measure.

Assumption 4.2.3 (One side growth of b). There exists p > 2 and λ3, λ4 ∈ R+ such that

2 〈x, b(x)〉+ ‖σ(x)‖2 ≤ −λ3 |x|p + λ4.

We are going to prove several properties for the solution. Firstly in §4.3, we will prove

the existence and uniqueness of the solution under Assumption 4.2.1 by contraction prin-

ciple. The estimation is based on a specific type of Bihari’s inequality so we shall prove

that inequality at the first place. In §4.4, our goal is to prove that the Ptφ generated by the

solution is indeed a Markov semigroup. We would see that the semigroup property relys
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Figure 1 This figure illustrates why we can use ρη(x2) to bound x2(1 ∨ logx−1).

on both homogenity and Markov property. In §4.5, strong Feller property and irreducibility

are proved under an additional assumption, Assumption 4.2.2. Hasminskii’s theorem yields

the overlap of these two properties implies the uniqueness of invariant measure. Finally,

in §4.6, we prove the existence of invariant measure under another additional assumption,

Assumption 4.2.3. Then by Doob’s theorem, the unique ergodic measure exists.

4.3 Existence and Uniqueness of the Solution

We choose a perticular class of functions, ρη, for K in Bihari’s inequality (Lemma

4.1.4). In order to treat the structure in Assumption 4.2.1, we define the following function.

For 0 < η < e−1, define the following concave and increasing function (see Fig. 1 for

ρη(x
2)):

ρη(x) =

{
x logx−1 0 < x ≤ η
η log η−1 + (log η−1 − 1)(x− η) x > η.

(24)

Lemma 4.3.1 (Bihari’s Inequality). Let g(s) be a strictly positive function on R+ satisfying

for some δ > 0,

g(t) ≤ g(0) + δ

∫ t

0

ρη(g(s))ds

for all t ≥ 0.

Then for all T > 0, we have

(i) g(t) ≤ g(0)exp(−δT ) if g(0) < ηexp(δT );

40



(ii) g(t) ≤ C(g(0)exp(−δT ) + g(0)), for some C = C(T, δ, η)

for all t ∈ [0, T ].

Note that if δ ≤ 0, then trivially g(t) ≤ g(0) for all t ∈ [0, T ].

In the following, when we refer to Bihari’s inequality, it means the above inequality

instead of the original one.

Proof. For (i), we are going to use Bihari’s inequality withK = ρη1(0,η]. Then

G(x) =

∫ x

1

ds
ρη(s)

= −
∫ η

x

ds
ρη(s)

≡ log
(
log η
logx

)
.

Then Dom(G−1) = (−∞, 0) and

G−1(x) = exp {log η exp(−x)} .

Direct calculation shows

G−1(G(g(0)) + δt) = g(0)exp(−δt).

Note that the condition g(0) < ηexp(δT ) implies G(g(0)) + δt < 0. The result then follows

by Bihari’s inequality.

For (ii), it remains to consider g(0) ≥ ηexp(δT ). Then

ρη(x) ≤ η log η−1 + (log η−1 − x)x

≤ g(0)exp(−δT ) log η−1 + (log η−1 − x)x.

So

g(t) ≤ g(0) + Tδg(0)exp(−δT ) log η−1 + δ(log η−1 − x)

∫ t

0

g(s)ds.

Gronwall’s inequality yields the result.

Note that if we apply Itô’s formula to |Yt|2, we obtain

d|Yt|2 =
(
〈b(Ys), Ys〉+ ‖σ(Ys)‖2

)
ds+ 2 〈Ys, σ(Ys)〉 dWs, (25)
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if symbolically dYt = b(Yt)dt+ σ(Yt)dWt.

Theorem 4.3.2. Let η ∈ L2(Ω,Fs). Under Assumption 4.2.1, SODE 22 with X(s) = η

processes an unique solution Xt. Moreover, Xt ∈ M 2(s, T ).

Proof. The idea of our proof is to use a fixed point argument in the spaceM 2([s, T ]). Define

γ(t,X)
def
= η +

∫ t

s

b(Xu)du+
∫ t

s

σ(Xu)dWu (26)

for X ∈ M 2([s, T ]), t ∈ [s, T ]. Then it is a solution of (22) iff it is a fixed point of γ:

X = γ(X). Firstly we are going to show γ maps M 2(s, T ) into itself, then that it is a 0-

contraction. The result then follows by the contraction principle (Theorem D.2, [Da Prato,

2014]).

1. Similar to (25), Itô’s formula yields that

|γ(t,X)|2 = |η|2 +
∫ t

0

(
2 〈b(Xs), Xs〉+ ‖σ(Xs)‖2

)
ds+ 2

∫ t

0

〈Xs, σ(Xs)dWs〉 .

By Assumption 4.2.1,

|γ(t,X)|2 ≤ |η|2 + λ0

∫ t

0

|Xs|2(1 ∨ log |Xs|−1) + 2

∫ t

0

〈Xs, σ(Xs)dWs〉 .

From Figure 1, there exists r2(1 ∨ log r−1) ≤ ρη(r
2), so that

|γ(t,X)|2 ≤ |η|2 + λ0

∫ t

0

ρη(|Xs|2) + 2

∫ t

0

〈Xs, σ(Xs)dWs〉 .

Now use the stopping time argument. Define

τn
def
= {t ∈ [0, T ] : |Xt| ≥ n}

and replace t by t∧τn. It is clear by the a.s. boundness ofXt on [0, T ] that τn → T a.s.

Then take expectation and apply Jensen’s inequality with the notice of the concavity
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of ρη,

E |γ(t ∧ τn, X)|2 ≤ E |η|2 + λ0

∫ t

0

ρη(E |Xs∧τn |2)ds.

Finally, the result follows by Bihari’s inequality, letting n→ ∞ and the help of Fatou’s

lemma.

2. Arguing exactly the same as above except for replacing γ(t,X) by γ(t,X) − γ(Y ),

where Y is another element in M 2(s, T ), we obtain

E |γ(t ∧ τn, X)− γ(t ∧ τn, Y )|2 ≤ λ0

∫ t

0

ρη(E |Xs∧τn − Ys∧τn |2)ds.

By Bihari’s inequality, it follows that

E |γ(t ∧ τn, X)− γ(t ∧ τn, Y )|2 = 0.

Let n→ ∞, Fatou’s lemma implies

E |γ(t,X)− γ(t, Y )|2 = 0.

Therefore by contraction principle, there exists a unique X ∈ M 2(s, T ) such that X(t) =

γ(t,X(t)). Moreover, t 7→ X(t) is continuous. Therefore b(Xt) ∈ L 1([s, T ]) and σ(Xt) ∈

L 2(s, T ). The uniqueness follows by the standard method using similar argument (we have

had shown the uniqueness over M 2(s, T ) only).

A similar argument yields the following, which I called the continuity w.r.t. initial value

in L2(Ω) sense.

Theorem 4.3.3. Let X(t, s, x) and X(t, s, y) be the solution of corresponding SODE (22).

Then

E |X(t, s, x)−X(t, s, y)|2 ≤ |x− y|exp(−λ0T )

provided that x, y are close enough.
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4.4 Homogenity, Markov and Semigroup Property

In this subsection, we wish to prove that

Ptφ(x)
def
= E[φ(Xx

t )]

satisfies the semigroup property: Ps ◦ Pt(φ) = Ps+t(φ).

Define

Ps,tφ(x)
def
= E[φ(Xs,x

t )].

Then Pt = P0,t.

The following property is an immediate consequence of uniqueness.

Lemma 4.4.1. Let ζ ∈ L2(Ω,Fs). Then

X(t, s, ζ) = X(t, r,X(r, s, ζ))

holds for 0 ≤ s ≤ r ≤ t ≤ T .

Proof. Since X(t, s, ζ) is the solution,

X(t, s, ζ) =ζ +

∫ t

s

b(Xs,ζ
u )du+

∫ t

s

σ(Xs,ζ
u )dWu

=ζ +

∫ r

s

+

∫ t

r

b(Xs,ζ
u )du+

∫ r

s

+

∫ t

r

σ(Xs,ζ
u )dWu

=X(r, s, ζ) +

∫ t

r

b(Xs,ζ
u )du+

∫ t

r

σ(Xs,ζ
u )dWu.

From the uniqueness, X(t, s, ζ) = X(t, r,X(r, s, ζ)).

A useful relationship between X(t, s, η) and X(t, s, x) is given below, where η ∈

L2(Ω,Fs) and x ∈ Rd.

Lemma 4.4.2. Assume that Assumption 4.2.1 holds and that

η =
n∑

k=1

xk1Ak
,
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where x1, . . . , xn ∈ Rd andA1, . . . , An aremutually disjoint sets inFs such thatΩ =
⋃

k Ak.

Then

X(t, s, η) =
n∑

k=1

X(t, s, xk)1Ak
.

For a proof, see (Proposition 8.6, [Da Prato, 2014])10.

We have the following preparation lemma for the proof of Markov property.

Lemma 4.4.3. For all φ ∈ Bb(Rd) and all η ∈ L2(Ω,Fs), we have

E[φ(X(t, s, η)) | Fs] = Ps,tφ(η)

for 0 ≤ s < t ≤ T . Consequently,

E[φ(X(t, s, η))] = E[Ps,tφ(η)].

Proof. [Da Prato, 2014]. Since the class of simple functions is dense in L2(Ω,Fs), Cb(Rd)

is dense in Bb(Rd), it is enough to take η of the form

η =
n∑

k=1

xk1Ak

where x1, . . . , xn ∈ Rd andA1, . . . , An are mutually disjoint sets inFs such thatΩ =
⋃

k Ak.

Once we have shown this, then we can find simple functions ηn → η for all ω satisfying

E[φ(X(t, s, ηn)) | Fs] = Ps,tφ(ηn).

Assume φ ∈ Cb(Rd). As we have shown the continuity of X(t, s, x) w.r.t. x in L2 sense,

there exists a subsequence {nk} such thatX(t, s, ηn) converges toX(t, s, η) a.s. Let k → ∞,

the result follows by bounded convergence theorem.

Now consider such case. By Lemma 4.4.2, we have

X(t, s, η) =
n∑

k=1

X(t, s, xk)1Ak

10Although we have different hypotheses to the coefficients of SODE, the map γ defined in (26) are both contractions.
Therefore the lemma holds in our situation.
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for 0 ≤ s ≤ t ≤ T . Consequently,

φ(X(t, s, η)) =
n∑

k=1

φ(X(t, s, xk))1Ak

since their domains are disjoint, which implies

E[φ(X(t, s, η)) | Fs] =
n∑

k=1

E[φ(X(t, s, xk))1Ak
| Fs].

Since 1Ak
is F -measurable and φ(X(t, s, xk)) is independent of Fs, we have

E[φ(X(t, s, xk))1Ak
| Fs] = Ps,tφ(xk)1Ak

by the property of conditional expectation. In conclusion,

E[φ(X(t, s, η)) | Fs] = Ps,tφ(η).

Theorem 4.4.4. Let 0 ≤ s ≤ r ≤ t ≤ T and φ ∈ Bb(Rd). Then we have

Ps,tφ(x) = E[Pr,tφ(X(r, s, x))].

In other words, Ps,tφ = Ps,rPr,tφ.

Proof. By Lemma 4.4.3, we have

E[Pr,tφ(X(r, s, x))] = E[φ(X(t, r,X(r, s, x)))] = E[φ(X(t, s, x))] = Ps,tφ(x).

Since E[Pr,tφ(X(r, s, x))] = Ps,r[Pr,tφ(x)], the result follows.

Theorem 4.4.5 (Markov Property). Let 0 ≤ s < r < t ≤ T and let η ∈ L2(Ω,Fs). Then

for all φ ∈ Bb(Rd) we have

E[φ(X(t, s, η)) | Fr] = Pr,tφ(X(r, s, η)).
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Proof. Set ζ = X(r, s, η). Then by Lemma 4.4.3, using Lemma 4.4.1,

E[φ(X(t, s, η)) | Fr] =E[φ(X(t, s,X(r, s, η))) | Fr]

=E[φ(X(t, r, ζ)) | Fr] = Pt,rφ(ζ)

and the conclusion follows.

The solution is time-homogeneous in the following sense.

Theorem 4.4.6. The solution Xs,x
t is time-homogeneous, i.e. {Xs,x

s+h} and {X0,x
h } have the

same distribution. In other words, Ps,s+h = P0,h = Ph.

Proof. [Øksendal, 2003]. On one hand,

Xs,x
s+h =x+

∫ s+h

s

b(Xs,x
u )du+

∫ s+h

s

σ(Xs,x
u )dWu

Let v = u− s or u = v + s

=x+

∫ h

0

b(Xs,x
v+s)dv +

∫ h

0

σ(Xs,x
v+s)dWv+s

Let W̃v = Wv+s −Ws. Check that ∆kW̃v = ∆kWv+s

=x+

∫ h

0

b(Xs,x
v+s)dv +

∫ h

0

σ(Xs,x
v+s)dW̃v.

Here W̃v is a Brownian motion started at 0 a.s. On the other hand,

X0,x
h = x+

∫ h

0

b(X0,x
v )dv +

∫ h

0

σ(Xs,x
v )dWv.

AsWv and W̃v have the same distribution, {Xs,x
s+h} and {X

0,x
h } also have the same distribution

by the uniqueness of the solution.

Theorem 4.4.7. Pt defines a Markov semigroup (not necessarily strongly continuous).

Proof. We have shown that P0,s+tφ = P0,sPs,s+tφ in Theorem 4.4.4. By homogenity,

Ps,s+t = Pt and the conclusion follows.

4.5 Uniqueness of Invariant Measure

The proofs in this subsection follow [Zhang, 2009].
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4.5.1 Strong Feller Property

For convenience, we denote z/|z| by z for z 6= 0.

Proof of Strong Feller Property. The proof of strong Feller property consists of three steps.

In Step 1, we prove that the coupling equation{
dY (t) = b(X(t))dt+ a(X(t)− Y (t)) · 1t<τdt+ σ(Y (t))dW (t)

Y (0) = y0, y0 ∈ Rd,
(27)

where

a(z)
def
= |x0 − y0|α · 1z ̸=0 · z

called the coupling function and

τ
def
= inf{t > 0 : |X(t)− Y (t)| = 0}

called the coupling time, is solvable. In Step 2, we use Itô’s formula and Lemma to estimate

the coupling time. In the last step, we use Girsanov’s theorem (Theorem 8.9.4, [Kuo, 2006])

to find the estimate of

|PTφ(x0)− PTφ(y0)| . (28)

Now we start the proof.

1. Considering the following equation{
dY ϵ

t = b(Y ϵ
t )dt+ aϵ(Xt − Y ϵ

t )dt+ σ(Y ϵ
t )dWt

Y ϵ
0 = y0, y0 ∈ Rd,

(29)

where

aϵ(z) = |x0 − y0|α · fϵ(|z|) · z,

fϵ : R+ → [0, 1] is smooth and equals 1 when r > ϵ; equals 0 when r ∈ [0, ϵ/2]. Then

the SODE (29) possesses a unique solution since

|aϵ(z)− aϵ(z
′)| ≤ Cϵ|z − z′|.
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The reason is that z 7→ z is 4/ϵ-Lipschitz when z > ϵ/2:

|z − z′| =
∣∣∣∣ z|z| − z′

|z′|

∣∣∣∣
=

∣∣∣∣ z|z| − z′

|z|
+
z′

|z|
− z′

|z′|

∣∣∣∣
≤ 1

|z|
|z − z′|+ |z′| ||z

′| − |z|
|z||z′|

≤ 4

ϵ
|z − z′|.

Therefore we have the solution Y ϵ
t . Define

τϵ
def
=

∫
{t > 0 : |Xt − Y ϵ

t | ≤ ϵ}.

Then for any ϵ′ < ϵ, we have Y ϵ′
t = Y ϵ

t when t < τϵ by uniqueness. Comparing (27)

and (29), we have Yt = Y ϵ
t when t < τϵ. Hence τ = limϵ↓0 τϵ. Then Yt is well-defined

on t < τ . When t ∈ [τ, T ], let Yt = Xt. Then it is clear that Yt solves (27).

2. Let Zt = Xt − Yt. Apply Itô formula to the function r 7→
√
|r|2 + ϵ and let ϵ → 0.

Then

|Zt∧τ | − |x0 − y0| −
∫ t∧τ

0

〈
Zs, (σ(Xs)− σ(Ys))dWs

〉
=

∫ t∧τ

0

(2|Zs|)−1 ·
(
2 〈Zs, b(Xs)− b(Ys)〉+ ‖σ(Xs)− σ(Ys)‖2

)
ds

−
∫ t∧τ

0

〈
Zs, a(Zs)

〉
ds−

∫ t∧τ

0

(2|Zs|)−1 · |[σ(Xs)− σ(Ys)]
∗(Zs)|2ds

≤λ0
2

∫ t∧τ

0

|Zs|(1 ∨ log |Zs|−1)ds− |x0 − y0|α(t ∧ τ).

Note that there exists an 0 < η < e−1 such that

r(1 ∨ log r−1) ≤ ρη(r)
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for all r > 0. Taking expectations yields that

E |Zt∧τ | ≤|x0 − y0| − |x0 − y0|α · E(t ∧ τ) + λ0
2
E
∫ t∧τ

0

ρη(|Zs|)ds

≤|x0 − y0| − |x0 − y0|α · E(t ∧ τ) + λ0
2

∫ t∧τ

0

ρη(E |Zs∧τ |)ds,

where the second step is due to Jensen’s inequality.

Using Bihari inequality, we get that for any t > 0 and |x0 − y0| < ηλ0T/2 ∧ η,

E |Zt∧τ | ≤ |x0 − y0|exp(−λ0t/2),

where we also use the fact that ρη is increasing. Then

E(t ∧ τ) ≤ |x0 − y0|1−α +
λ0t

2
ρη(|x0 − y0|exp(−λ0t/2)) · |x0 − y0|−α. (30)

3. Let

RT = exp
[∫ T∧τ

0

H(Xs, Ys)dWs −
1

2

∫ T∧τ

0

|H(Xs, Ys)|2ds
]

and

W̃t = Wt +

∫ t∧τ

0

H(Xs, Ys)ds,

where H(x, y) = |x0 − y0|α · [σ(y)]−1x− y. Then

|H(x, y)|2 ≤ |x0 − y0|2α ‖σ(y)‖−2 ≤ |x0 − y0|2α · λ23.

By Novikov condition (Remark 8.7.4, [Kuo, 2006]), ERT = 1 and

ER2
T ≤ exp(Tλ23 |x0 − y0|2α).

Then

|PTφ(x0)− PTφ(y0)|
= |E[φ(Xx0

T )]− E[φ(Xy0
T )]| = |E[φ(Xx0

T )]− E[φ(Y y0
T )]|

=E |[φ(Xx0
T )−RTφ(Y

y0
T )] · 1T≥τ |+ E |[φ(Xx0

T )−RTφ(Y
y0
T )] · 1T<τ | .
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We have

E |[φ(Xx0
T )−RTφ(Y

y0
T )] · 1T≥τ | =E |[φ(Xx0

T )−RTφ(X
y0
T )] · 1T≥τ |

≤ ‖φ‖0 · E |1−RT |.

Since

(E |1−RT |)2 =ER2
T − 1

≤ exp(Tλ23|x0 − y0|2α)− 1

≤Tλ2|x0 − y0|2α exp(Tλ|x0 − y0|2α)
=CT,λ,η′ · |x0 − y0|2α

for |x0 − y0| < η′ (as α will be chosen w.r.t. λ0 and T , we omit it from the subscript

of C), we obtain the estimate for the first term. For the second term,

(E[(1 + RT ) · 1τ≥T ])
2 ≤(E |1 + RT |2) · P(τ ≥ T )

=(3 + ER2
T ) P((2T ∧ τ) ≥ T )

=CT,λ0,η′′ E(2T ∧ τ).

By L’ Hospital’s thoerem,

E(2T ∧ τ) ≤ C|x0 − y0|exp(−λ0T/2)/2.

Combining two estimation, we obtain

|PTφ(x0)− PTφ(y0)| ≤ CT,λ,η · |x0 − y0|exp(−λ0T/2)/4.

Thus PT is strong Feller.

4.5.2 Irreducibility

For proving the irreducibility of Pt, it means to prove that for any x0 ∈ Rd, T > 0 and

y0 ∈ Rd, a > 0,

PT (x0, B(y0, a)) = P(|XT (x0)− y0| ≤ a) > 0.
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Proof of Irreducibility. Let t1 ∈ (0, T ), whose value will be determined below. Let ϵ > 0.

Set

Xϵ
t1

def
= Xt1 · 1|Xt1 |≤ϵ−1 .

Then

lim
ϵ↓0

E |Xϵ
t1
−Xt1|2 = 0.

Define Ys for s ∈ [t1, T ] as the following:

Y ϵ
s =

T − s

T − t1
Xϵ

t1
+
s− t1
T − t1

y0

satisfies Y ϵ
t1
= Xϵ

t1
, Y ϵ

T = y0 and the following relation:

Y ϵ
t = Xϵ

t1
+

∫ t

t1

b(Y ϵ
s )ds+

∫ t

t1

hϵsds

for t ∈ [t1, T ], where

hϵs
def
=
y0 −Xϵ

t1

T − t1
− b(Y ϵ

s ).

Consider the following SODE on [t1, T ]:

Xϵ
t = Xt1 +

∫ t

t1

b(Xϵ
s)ds+

∫ t

t1

hϵsds+
∫ t

t1

σ(Xϵ
s)dWs.

If we define

Xϵ
t = Xt

for t ∈ [0, t1], then for any t ∈ [0, T ],

Xϵ
t = x0 +

∫ t

0

b(Xϵ
s)ds+

∫ t

0

hϵs1s>t1ds+
∫ t

0

σ(Xϵ
s)dWs.

Now define

W̃ ϵ
t = Wt +

∫ t

0

Hϵ
sds

and

Rϵ
T = exp

[∫ T

0

〈dWs, H
ϵ
s〉 −

1

2

∫ T

0

|Hϵ
s|2ds

]
,
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where

Hϵ
s
def
= 1s>t1 [σ(X

ϵ
s)]

−1hϵs.

Note that by Assumption 4.2.2 and the continuity of b,

|Hϵ
s| ≤ λ2|hϵs| ≤ Cλ2,ϵ,t1 .

By Noviki condition, ERϵ
T = 1, P(Rϵ

T > 0) = 1 and W̃ ϵ
t is a d-dimensional Brownian

motion under Rϵ
T · P. Thus Xϵ

T (x0) has the same law as XT (x0) in different probability

measure. Due to the equivalence, it suffices to show

P(|Xϵ
T (x0)− y0| > a) < 1.

Set Zϵ
t = Xϵ

t − Y ϵ
t . By Itô’s formula, we have

E |Zϵ
t |2 = E |Xt1 −Xϵ

t1
|2 +

∫ t

t1

E
(
2 〈Zϵ

s, b(X
ϵ
s)− b(Xϵ

s)〉+ ‖σ(Xϵ
s)‖

2) ds
= E |Xt1 −Xϵ

t1
|2 + Ca

∫ t

t1

E(|Y ϵ
s |2 + 1)ds+ Cλ0,a

∫ t

t1

E(|Zϵ
s|2(1 ∨ log |Zϵ

s|−1))ds.

We have, ∫ t

t1

E |Y ϵ
s |2ds ≤2(T − t1)(E |Xϵ

t1
|2 + |y0|2)

≤2(T − t1)(CT,x0,λ0,λ1 + |y0|2).

By Bihari’s inequality,

E |Xϵ
T − y0|2 ≤

[
E |Xt1 −Xϵ

t1
|2 + C(T − t1)

]exp(−Cλ0,a
T )
.

Hence

P(|Xϵ
T (x0)− y0| > a) ≤ 1

a2
E |Xϵ

T (x0)− y0|2

≤ 1

a2
[
E |Xt1 −Xϵ

t1
|2 + C(T − t1)

]exp(−Cλ0,a
T )
.

Let t1 close to T and choose ϵ to be sufficiently small, the result follows.
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4.6 Existence of Invariant Measure

The following theorem is a consequence of Krylov-Bogoliubov theorem, which is fre-

quently used to find invariant measures.

Theorem 4.6.1. LetH be a Hilbert space. Assume there exists some x0 ∈ H and a constant

C = C(x0) > 0 such that
1

t

∫ t

0

E[V (Xx0(t))] ≤ C(x0)

for all t ≥ 0, where V : H → [1,∞] is a Borel function whose level sets

Kα
def
= {x : V (x) ≤ α}

are compact for any α > 0. Then there exists an invariant measure for X .

Proof. Recall the definition of µT in Theorem 3.3.3. Given ϵ > 0, let a(ϵ) = C(x0)/ϵ, then

the level setKa(ϵ) satisfies

µT (x0, Ka(ϵ)c) =
1

T

∫ T

0

∫
V (y)>a(ϵ)

Pt(x0, dy)dt

≤
∫
Pt(x0, dy)

1

T

∫ T

0

[
V (y)

a(ϵ)

]
dt

=

∫
Pt(x0, dy)

1

a(ϵ)

1

T

∫ T

0

E[V (Xx0(t))]dt ≤ ϵ.

Hence {µt(x0, ·)} is tight, which ensures the existence of invariant measures.

Remark 4.6.2. WhenH = Rd, the condition limx→∞ V (x) = ∞ could replace the compact-

ness of level sets in Theorem 4.6.1. The reason is that limx→∞ V (x) = ∞ means that for

every M > 0, there exists R > 0 such that for |x| > R we have V (x) > M , so that we

can always find BR(x)
c
⊆ {V (x) > M}. Consequently, we can choose BR(x) instead of

{V (x) ≤M} in the proof of each statement.

Proof of Uniqueness. Using Itô’s formula, we have by Assumption 4.2.3 and Hölder’s in-
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equality

d E |Xt|2

dt
= E(2 〈Xt, b(Xt)〉+ ‖σ(Xt)‖2)

≤ −λ3 E |Xt|p + λ4

≤ −λ3
(
E |Xt|2

)p/2
+ λ4.

Hence for all t > 0

1

t

∫ t

0

E |Xs|2 ≤ λ4.

The result follows by Theorem 4.6.1.

We summarize our results as the following theorem using Doob’s theorem.

Theorem 4.6.3. Assume Assumption 4.2.1-4.2.2 holds. Then the semigroup of the solution

of SODE (22) is strong Feller and irreducible. If in addition, Assumption 4.2.3 holds, then

the solution is strongly mixing thus erogdic.

（This is the end of the thesis,本文完）
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